On a Result of Brinck in the Limit-Point Theory of Second- Order Differential Expressions

Type: Article

Publication Date: 1983-01-01

Citations: 3

DOI: https://doi.org/10.1080/00036818308839440

Locations

  • Applicable Analysis - View

Similar Works

Action Title Year Authors
+ On limit-point and Dirichlet-type results for second-order differential expressions 1976 W. D. Evans
+ On the strong limit-point and Dirichlet properties of second order differential expressions 1985 David Race
+ ON THE STRONG LIMIT-POINT CONDITION OF SECOND-ORDER DIFFERENTIAL EXPRESSIONS 1975 W. N. Everitt
+ Relations between Limit-Point and Dirichlet Properties of Second-Order Difference Operators 2007 A. Delil
+ A Limit-Point Criterion for Second-Order Differential Expressions with Matrix-Valued Coefficients 1984 Hilbert Frentzen
+ On the Strong and Weak Limit-Point Classification of Second-Order Differential Expressions† 1974 W. N. Everitt
M. Giertz
J. B. McLeod
+ A Class of Limit-Point Criteria 1981 F. V. Atkinson
+ On a second-order differential expression and its Dirichlet integral 1982 S. D. Wray
+ On the Strong Limit-Point Classification of Fourth-Order Differential Expressions with Complex Coefficients 1976 Vinod Kumar
+ A note on Dirichlet-type criteria for complex Sturm-Liouville expressions 1990 David Race
+ PDF Chat On the Dirichlet Series and Asymptotic Expansions of Integral Functions of Zero Order 1909 J. E. Littlewood
+ On the limit point classification of second order differential equations 1973 James S. W. Wong
Anton Zettl
+ On the Limit Point Condition for Polynomials in a Second Order Differential Expression 1975 Thomas T. Read
+ Interval Limit-Point Criteria for Differential Expressions and their Powers 1977 W. D. Evans
Anton Zettl
+ PDF Chat Diskreti ribinė teorema bendrosioms Dirichlet eilutėms kompleksinėje plokštumoje su pagerinta sąlyga 2005 Renata Macaitienė
+ Some remarks on a separation and limit-point criterion of second-order, ordinary differential expressions 1973 W. N. Everitt
M. Giertz
Joachim Weidmann
+ On the Limit-Point Classification of Second-Order Differential Operators 1966 W. N. Everitt
+ Lecture Notes on Applied Analysis 2010 Roderick Wong
+ PDF Chat On Selberg’s Central Limit Theorem for Dirichlet<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi></mml:math>-functions 2021 Po-Han Hsu
Peng‐Jie Wong
+ On the Calculus of Functions Derived From Limiting-Ratios 1895 W. H. Echols