A class of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mtext>–</mml:mtext><mml:mi>q</mml:mi></mml:math>-Laplacian type equation with concave–convex nonlinearities in bounded domain

Type: Article

Publication Date: 2011-05-08

Citations: 43

DOI: https://doi.org/10.1016/j.jmaa.2011.04.090

Locations

  • Journal of Mathematical Analysis and Applications - View

Similar Works

Action Title Year Authors
+ PDF Chat Nonlinear 𝑝-Laplacian problems on unbounded domains 1992 Lao Sen Yu
+ An <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si11.svg" display="inline" id="d1e23"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi></mml:mrow></mml:msup></mml:math>-estimate for solutions to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg" display="inline" id="d1e33"><mml:mi>p</mml:mi></mml:math>-Laplacian type equations using an obstacle approach and applications 2025 Elzon C. Bezerra Júnior
João Vítor da Silva
Romário Tomilhero Frias
+ Existence results for a borderline case of a class of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si29.svg" display="inline" id="d1e26"><mml:mi>p</mml:mi></mml:math>-Laplacian problems 2025 Anna María Candela
Kanishka Perera
Addolorata Salvatore
+ Existence of solutions for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mn>2</mml:mn><mml:mspace width="0.16667em" /><mml:mi>n</mml:mi><mml:mstyle mathvariant="normal"><mml:mi>th</mml:mi></mml:mstyle></mml:math>-order nonlinear <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi></mml:math>-Laplacian differential equations 2016 Lorena Saavedra
Stepan Tersian
+ On a planar equation involving <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg" display="inline" id="d1e23"><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-Laplacian with zero mass and Trudinger–Moser nonlinearity 2024 Juliana Andrade Cardoso
José Carlos de Albuquerque
João P. S. Maurício de Carvalho
Giovany M. Figueiredo
+ Potential well method for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si4.svg"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>-Laplacian equations with variable exponent sources 2020 Le Cong Nhan
Quach Van Chuong
Le Xuan Truong
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msup></mml:math> estimates of gradients for evolutional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mi>p</mml:mi></mml:math>-Laplacian systems 2005 Masashi Misawa
+ PDF Chat Positive Solutions of a Kind of Equations Related to the Laplacian and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math>-Laplacian 2014 Fangfang Zhang
Zhanping Liang
+ A mountain pass algorithm for quasilinear boundary value problem with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1362" altimg="si343.svg"><mml:mi>p</mml:mi></mml:math>-Laplacian 2021 Michaela Bailová
Jiřı́ Bouchala
+ Existence results for a Neumann problem involving the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-Laplacian with discontinuous nonlinearities 2015 Giuseppina Barletta
Antonia Chinnì
Donal O’Regan
+ Schrödinger equations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> with critical exponential growth and concave nonlinearities 2022 Xiaoyan Lin
Xianhua Tang
+ Corrigendum to “Existence of solutions for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian problems on a bounded domain” [J. Math. Anal. Appl. 306 (2005) 604–618] 2005 J. Chabrowski
Yongqiang Fu
+ On a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si26.svg"><mml:mi>k</mml:mi></mml:math>-Hessian equation with a weakly superlinear nonlinearity and singular weights 2019 Meiqiang Feng
Xuemei Zhang
+ Gradient continuity for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mo>⋅</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:math>-Laplace systems 2016 Jihoon Ok
+ On the solvability of a boundary value problem for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> </mml:math>-Laplacian differential equations 2017 Petio Kelevedjiev
Silvestar Bojerikov
+ PDF Chat Multiple Positive Solutions for a Quasilinear Elliptic System Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions 2012 Tsing‐San Hsu
+ Fractional Musielak spaces: a class of non-local problem involving concave–convex nonlinearity 2023 Hamza El‐Houari
Moussa Hicham
Soufiane Kassimi
Hajar Sabiki
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>C</mml:mi><mml:mn>1</mml:mn></mml:msup></mml:math> solutions for fully nonlinear systems of differential equations of first order 2009 Jordan Goblet
+ An elliptic equation with concave and convex nonlinearities 2003 Shibo Liu
Shujie Li
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns="http://www.w3.org/1998/Math/MathML"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:math>-Laplacian problem with logarithmic and exponential nonlinearities 2023 Chen Zi-gao

Works That Cite This (43)

Action Title Year Authors
+ On a fractional <i>(p,q)</i> -Laplacian equation with critical nonlinearities 2024 Yansheng Shen
+ Double-phase problems and a discontinuity property of the spectrum 2018 Νικόλαος Παπαγεωργίου
Vicenţiu D. Rădulescu
Dušan Repovš
+ Generalized eigenvalue problems for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian with indefinite weight 2014 Mieko Tanaka
+ A critical Kirchhoff‐type problem involving the ‐Laplacian 2013 F. Cammaroto
Luca Vilasi
+ PDF Chat Multiplicity of Positive Solutions for a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:math>-Laplacian Type Equation with Critical Nonlinearities 2014 Tsing‐San Hsu
Huei-Li Lin
+ Local behaviour and existence of solutions of the fractional (p,q)-Laplacian 2018 Emerson Abreu
Aldo H. S. Medeiros
+ On critical double phase Choquard problems with singular nonlinearity 2023 Baoling Yang
Deli Zhang
Sihua Liang
+ Multiplicity of positive solutions to a -Laplacian equation involving critical nonlinearity 2012 Honghui Yin
Zuodong Yang
+ A complete classification of bifurcation diagrams for a class of (p,q)-Laplace equations 2018 Ryuji Kajikiya
Inbo Sim
Satoshi Tanaka
+ A Critical $$ p \&amp; q$$-Laplacian Problem with Shifting Subcritical Perturbation 2024 Cuicui Long
Aliang Xia