Weak Linking Theorems and Schrödinger Equations with Critical Sobolev Exponent

Type: Article

Publication Date: 2003-08-01

Citations: 98

DOI: https://doi.org/10.1051/cocv:2003029

Abstract

In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation , where N ≥ 4; V,K,g are periodic in xj for 1 ≤ j ≤ N and 0 is in a gap of the spectrum of -Δ + V; K>0. If for an appropriate constant c, we show that this equation has a nontrivial solution.

Locations

  • ESAIM Control Optimisation and Calculus of Variations - View - PDF
  • Springer Link (Chiba Institute of Technology) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ A new infinite-dimensional linking theorem for parameter-dependent functionals and periodic Schrödinger equations 2015 Shaowei Chen
Lishan Lin
Liqin Xiao
+ Existence of solution for quasilinear Schrödinger equations using a linking structure 2021 Edcarlos D. Silva
Jefferson S. Silva
+ PDF Chat Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure 2020 Edcarlos D. Silva
Jefferson S. Silva
+ Existence of weak solutions for a class of fractional Schrödinger equations with periodic potential 2017 Yang Pu
Jiu Liu
Chun‐Lei Tang
+ High Energy Solutions to $p(x)-$Laplacian Equations of Schrödinger type 2012 Xianyao Wang
JH Yao
DC Liu
+ Solutions of Schrödinger equations with inverse square potential and critical nonlinearity 2012 Yinbin Deng
Lingyu Jin
Shuangjie Peng
+ Existence results for Schrödinger $p(x)$-Laplace equations involving critical growth in $\mathbb{R}^N$ 2018 Ky Ho
Yun-Ho Kim
Inbo Sim
+ Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms 2005 Yanheng Ding
Cheng Lee
+ On Schrödinger equations with periodic potentials and with nonperiodic nonlinearities 2013 Fei Fang
+ PDF Chat New Super-quadratic Conditions on Ground State Solutions for Superlinear Schrödinger Equation 2014 Xianhua Tang
+ On a periodic Schrödinger equation involving periodic and nonperiodic nonlinearities in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> 2018 Claudianor O. Alves
Marcius Petrúcio de Almeida Cavalcante
Everaldo S. Medeiros
+ A Note on Nonlinear Schr\"odinger Equations: Unveiling the Relation Between Spectral Gaps and the Nonlinearity Behavior 2019 Mayra Soares Costa Rodrigues
Liliane A. Maia
+ A Note on Nonlinear Schrödinger Equations: Unveiling the Relation Between Spectral Gaps and the Nonlinearity Behavior 2019 Mayra Soares Costa Rodrigues
Liliane A. Maia
+ New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum 2013 Xianhua Tang
+ PDF Chat Ground State Solution of Pohožaev Type for Quasilinear Schrödinger Equation Involving Critical Exponent in Orlicz Space 2019 Jianqing Chen
Qian Zhang
+ New results concerning a Schrödinger equation involving logarithmic nonlinearity 2024 Yiming Cai
Yulin Zhao
Chaoliang Luo
+ Morawetz estimates and spacetime bounds for quasilinear Schrödinger equations with critical Sobolev exponent 2019 Xianfa Song
+ PDF Chat Existence and Multiplicity of Solutions for Sublinear Schrödinger Equations with Coercive Potentials 2019 Dong‐Lun Wu
+ A non-periodic indefinite variational problem in ℝ<sup><i>N</i></sup> with critical exponent 2023 Gustavo S. A. Costa
Giovany M. Figueiredo
José Carlos de Oliveira
+ Quasilinear Schrödinger equations with a positive parameter and involving unbounded or decaying potentials 2019 Uberlândio B. Severo
Gilson M. de Carvalho