Planar Earthmover Is Not in $L_1$

Type: Article

Publication Date: 2007-01-01

Citations: 102

DOI: https://doi.org/10.1137/05064206x

Abstract

We show that any $L_1$ embedding of the transportation cost (a.k.a. Earthmover) metric on probability measures supported on the grid $\{0,1,\ldots,n\}^2 \subseteq \mathbb{R}^2$ incurs distortion $\Omega \left(\sqrt{\log n}\right)$. We also use Fourier analytic techniques to construct a simple $L_1$ embedding of this space which has distortion $O(\log n)$.

Locations

  • SIAM Journal on Computing - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Planar Earthmover is not in $L_1$ 2005 Assaf Naor
Gideon Schechtman
+ Pairwise Multi-marginal Optimal Transport and Embedding for Earth Mover's Distance 2019 Cheuk Ting Li
Venkat Anantharam
+ Pairwise Multi-marginal Optimal Transport and Embedding for Earth Mover's Distance 2019 Cheuk Ting Li
Venkat Anantharam
+ Nonembeddability theorems via Fourier analysis 2005 Subhash Khot
Assaf Naor
+ PDF Chat Transportation cost spaces and stochastic trees 2025 Rubén Medina
Garrett Tresch
+ Bourgain's discretization theorem 2011 Ohad Giladi
Assaf Naor
Gideon Schechtman
+ Bourgain's discretization theorem 2011 Ohad Giladi
Assaf Naor
Gideon Schechtman
+ Fast Algorithms for a New Relaxation of Optimal Transport 2023 Moses Charikar
Beidi Chen
Christopher Ré
Erik Waingarten
+ A Quantized Johnson Lindenstrauss Lemma: The Finding of Buffon's Needle 2013 Laurent Jacques
+ $L_1$-distortion of Wasserstein metrics: a tale of two dimensions 2022 Florent P. Baudier
Chris Gartland
Thomas Schlumprecht
+ Embedding approximately low-dimensional $\ell_2^2$ metrics into $\ell_1$ 2015 Amit Deshpande
Prahladh Harsha
Rakesh Venkat
+ A Quantized Johnson Lindenstrauss Lemma: The Finding of Buffon's Needle 2013 Laurent Jacques
+ Regularity of Harmonic Maps from Polyhedra to CAT(1) Spaces 2016 Christine Breiner
Ailana Fraser
Lan-Hsuan Huang
Chikako Mese
Pam Sargent
Yingying Zhang
+ PDF Chat Nonpositive curvature is not coarsely universal 2019 Alexandros Eskenazis
Manor Mendel
Assaf Naor
+ Transportation cost spaces and their embeddings into $L_1$, a Survey 2023 Thomas Schlumprecht
+ Bilipschitz snowflakes and metrics of negative type 2010 James R. Lee
Mohammad Moharrami
+ PDF Chat Stochastic approximation of lamplighter metrics 2022 Florent P. Baudier
Pavlos Motakis
Thomas Schlumprecht
András Zsák
+ PDF Chat Regularity of harmonic maps from polyhedra to CAT(1) spaces 2017 Christine Breiner
Ailana Fraser
Lan-Hsuan Huang
Chikako Mese
Pam Sargent
Ying‐Ying Zhang
+ Covering Planar Metrics (and Beyond): O(1) Trees Suffice 2023 Hsien-Chih Chang
Jonathan Conroy
Hung Lê
Lazar Milenković
Shay Solomon
Cuong Than
+ Stochastic approximation of lamplighter metrics 2020 Florent P. Baudier
Pavlos Motakis
Thomas Schlumprecht
András Zsák