Representation of holomorphic functions by boundary integrals

Type: Article

Publication Date: 1971-01-01

Citations: 28

DOI: https://doi.org/10.1090/s0002-9947-1971-0283182-0

View Chat PDF

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a compact locally connected set in the plane and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a function holomorphic in the extended complement of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis normal infinity right-parenthesis equals 0"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">f(\infty ) = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that there exists a sequence of measures <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace mu Subscript n Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {\mu _n}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfying <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="limit Underscript n right-arrow normal infinity Endscripts StartAbsoluteValue EndAbsoluteValue mu Subscript n Baseline StartAbsoluteValue EndAbsoluteValue Superscript 1 slash n Baseline equals 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:munder> <mml:mo movablelimits="true" form="prefix">lim</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:munder> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{\lim _{n \to \infty }}||{\mu _n}|{|^{1/n}} = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis z right-parenthesis equals sigma-summation Underscript n equals 0 Overscript normal infinity Endscripts integral Underscript upper K Endscripts left-parenthesis w minus z right-parenthesis Superscript negative n minus 1 Baseline d mu Subscript n Baseline left-parenthesis w right-parenthesis left-parenthesis z element-of upper K right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>K</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>w</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mi>d</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>w</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">f(z) = \sum \nolimits _{n = 0}^\infty {\int _K {{{(w - z)}^{ - n - 1}}d{\mu _n}(w)(z \in K)} }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It follows from the proof that two topologies for the space of functions holomorphic on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the same. One of these is the inductive limit topology introduced by Köthe, and the other is defined by a family of seminorms which involve only the values of the functions and their derivatives on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A key lemma is an open mapping theorem for certain locally convex spaces. The representation theorem and the identity of the two topologies is false when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a compact subset of the unit circle which is not locally connected.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat An integral representation of holomorphic functions 1979 R. W. Hilger
Johannes Michaliček
+ PDF Chat A holomorphic function with wild boundary behavior 1985 Josip Globevnik
+ PDF Chat Compact composition operators on spaces of boundary-regular holomorphic functions 1987 Joel H. Shapiro
+ Fixed point formula for holomorphic functions 2004 Николай Тарханов
+ PDF Chat On the volumes of images of holomorphic mappings in 𝐶ⁿ 1986 H. Alexander
+ PDF Chat An area theorem for holomorphic functions 1985 Shinji Yamashita
+ PDF Chat Boundary continuity of holomorphic functions in the ball 1986 Frank Beatrous
+ PDF Chat On analytic functions into 𝑙^{𝑝}-spaces 1976 Josip Globevnik
+ PDF Chat On compact and bounding holomorphic mappings 1989 Mikael Lindström
+ PDF Chat Analysis and applications of holomorphic functions in higher dimensions 1994 R. Z. Yeh
+ PDF Chat Bounded holomorphic functions in Siegel domains 1973 Su Shing Chen
+ PDF Chat Finite order vanishing of boundary values of holomorphic mappings 1991 Mitja Lakner
+ PDF Chat The extension of regular holomorphic maps 1974 H. L. Royden
+ PDF Chat Holomorphic mappings of domains with generic corners 1982 S. M. Webster
+ PDF Chat Approximation on disks 1972 Kenneth John Preskenis
+ An extension theorem of holomorphic functions on hyperconvex domains 2019 Seungjae Lee
Yoshikazu Nagata
+ PDF Chat Boundary behavior of holomorphic functions of 𝐴^{𝑝}_{𝑞,𝑠} 1993 Zhang Jian Hu
+ PDF Chat Convolution equations and harmonic analysis in spaces of entire functions 1973 D. G. Dickson
+ Boundary points as limit functions of iterated holomorphic function systems 2009 Kourosh Tavakoli
+ PDF Chat A geometric characterization of 𝑁⁺ domains 1983 Patrick Ahern
William S. Cohn

Cited by (25)

Action Title Year Authors
+ PDF Chat Each non-zero convolution operator on the entire functions admits a continuous linear right inverse 1988 Reinhold Meise
B. A. Taylor
+ A Banach-Dieudonné theorem for germs of holomorphic functions 1984 Jorge Mújica
+ PDF Chat Representing systems generated by reproducing kernels 2018 Emmanuel Fricain
Lê Hải Khôi
Pascal Lefèvre
+ PDF Chat 8.1. Golubev series and analyticity in the neighborhood of a continuum 1984 V. P. Khavin
+ PDF Chat The overdetermined Cauchy problem in some classes of ultradifferentiable functions 2001 Chiara Boiti
Mauro Nacinovich
+ Mathematical models for geometric control theory 2013 Saber Jafarpour
Andrew D. Lewis
+ PDF Chat Golubev series for solutions of elliptic equations 1999 Ch. Dorschfeldt
Николай Тарханов
+ PDF Chat The overdetermined Cauchy problem 1997 Chiara Boiti
Mauro Nacinovich
+ �ber einen Homomorphiesatz von G.K�the 1978 Bruno Ernst
+ Sequence space representations for weighted solution spaces of hypoelliptic systems of partial differential operators 1986 Michael Langenbruch
+ PDF Chat An integral representation of holomorphic functions 1979 R. W. Hilger
Johannes Michaliček
+ PDF Chat Whitney’s extension theorem for ultradifferentiable functions of Beurling type 1988 Reinhold Meise
B. A. Taylor
+ Time-Varying Vector Fields and Their Flows 2014 Saber Jafarpour
Andrew D. Lewis
+ Weighted inductive and projective limits of normed Köthe function spaces 1988 Konrad Reiher
+ Closed graph theorems for generalized inductive limit topologies 1977 Wolfgang M. Ruess
+ Solvability of convolution equations in the Beurling spaces of ultradifferentiable functions of mean type on an interval 2012 D. A. Abanina
+ Analytic implementation of the duals of some spaces of infinitely differentiable functions 2006 Alexander V. Abanin
I. A. Filip’ev
+ Aspects of Inductive Limits in Spaces of Germs of Holomorphic Functions on Locally Convex Spaces and Applications to a Study of (H(U), τW) 1979 Klaus-Dieter Bierstedt
Reinhold Meise
+ Nuclearity and the Schwartz Property in the Theory of Holomorphic Functions on Metrizable Locally Convex Spaces 1977 Klaus-Dieter Bierstedt
Reinhold Meise
+ The C ω -Topology for the Space of Real Analytic Vector Fields 2014 Saber Jafarpour
Andrew D. Lewis
+ Topology for Spaces of Real Analytic Sections and Mappings 2023 Andrew D. Lewis
+ Bibliography 1981
+ PDF Chat Localizable analytically uniform spaces and the fundamental principle 1981 Sönke Hansen
+ PDF Chat A projective description of weighted inductive limits 1982 Klaus-D. Bierstedt
Reinhold Meise
W. H. Summers
+ PDF Chat A representation theorem for functions holomorphic off the real axis 1972 Albert Baernstein