Exponentially accurate semiclassical asymptotics of low-lying eigenvalues for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mn>2</mml:mn><mml:mo>×</mml:mo><mml:mn>2</mml:mn></mml:math> matrix Schrödinger operators

Type: Article

Publication Date: 2005-04-15

Citations: 5

DOI: https://doi.org/10.1016/j.jmaa.2005.03.035

Locations

  • Journal of Mathematical Analysis and Applications - View

Similar Works

Action Title Year Authors
+ Semiclassical Resolvent Estimates for Matrix Schrodinger Operators and Applications 2024 Marouane Assal
Pablo Miranda
Maher Zerzeri
+ PDF Chat Exponentially accurate error estimates of quasiclassical eigenvalues 2001 Julio H. Toloza
+ PDF Chat Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrödinger operators with magnetic fields 1996 Zhongwei Shen
+ Exponentially accurate semiclassical asymptotics 2002 Julio H. Toloza
+ PDF Chat Eigenvalue Asymptotics of Schrödinger Operators with Only Discrete Spectrum 1992 Kazuya Tachizawa
+ Eigenvalue asymptotics and exponential decay of eigenfunctions for the fourth order Schrödinger type operator 2022 Zhao Yuan
Lin Tang
+ PDF Chat Asymptotic Behaviors of the Eigenvalues of Schrödinger Operator with Critical Potential 2014 Xiaoyao Jia
Yan Zhao
Haoyu Zhai
+ The asymptotic behaviour of the eigenfunctions of higher order of the Schrödinger operator 1982 Vilmos Komornik
+ PDF Chat Semiclassical asymptotic behavior of orthogonal polynomials 2020 D. R. Yafaev
+ Efficient exponential splitting spectral methods for linear Schrödinger equation in the semiclassical regime 2020 Wansheng Wang
Jiao Tang
+ Exponential Estimates of Eigenfunctions of Matrix Schrödinger and Dirac Operators 2010 Vladimir Rabinovich
Steffen Roch
+ Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions 1983 Barry Simon
+ Asymptotics of small eigenvalues of Hankel matrices generated by a semiclassical Gaussian weight 2025 Mengkun Zhu
Yuting Chen
Yang Chen
+ PDF Chat Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum 2020 Tulkin H. Rasulov
Elyuor Bakhtiyorovich Dilmurodov
+ Semiclassical approximation for Schrödinger operators at high energy 2008 Lawrence E. Thomas
Stephen R. Wassell
+ Eigenvalue asymptotics for the schrodinger operator in strong constant magnetic fields 1998 Georgi Raikov
+ PDF Chat Exponentially accurate error estimates of quasiclassical eigenvalues. II. Several dimensions 2003 Julio H. Toloza
+ Asymptotic behavior of generalized eigenvalues of the schrodinger operator 2014 A. B. Shabat
О.Ю. Веремеенко
М.Ш. Бадахов
+ Eigenvalue asymptotics for the Schrödinger operators on the hyperbolic plane 2003 Yuzuru Inahama
Shin-ichi Shirai
+ Semiclassical asymptotics of the spectrum near the lower boundary of spectral clusters for a Hartree-type operator 2017 A. V. Pereskokov