Random symmetric matrices are almost surely nonsingular

Type: Article

Publication Date: 2006-10-18

Citations: 124

DOI: https://doi.org/10.1215/s0012-7094-06-13527-5

Abstract

Let Qn denote a random symmetric (n×n)-matrix, whose upper-diagonal entries are independent and identically distributed (i.i.d.) Bernoulli random variables (which take values 0 and 1 with probability 1/2). We prove that Qn is nonsingular with probability 1-O(n-1/8+δ) for any fixed δ>0. The proof uses a quadratic version of Littlewood-Offord-type results concerning the concentration functions of random variables and can be extended for more general models of random matrices

Locations

  • Duke Mathematical Journal - View
  • arXiv (Cornell University) - PDF
  • Duke Mathematical Journal - View
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ Random symmetric matrices are almost surely non-singular 2005 Kevin Costello
Terence Tao
Van Vu
+ PDF Chat Inverse Littlewood–Offord problems and the singularity of random symmetric matrices 2012 Hoi H. Nguyen
+ A simple observation on random matrices with continuous diagonal entries 2013 Omer Friedland
Ohad Giladi
+ A simple observation on random matrices with continuous diagonal entries 2013 Omer Friedland
Ohad Giladi
+ PDF A simple observation on random matrices with continuous diagonal entries 2013 Omer Friedland
Ohad Giladi
+ Invertibility of symmetric random matrices 2011 Roman Vershynin
+ Invertibility of symmetric random matrices 2011 Roman Vershynin
+ PDF Singularity of random symmetric matrices – simple proof 2021 Asaf Ferber
+ Smoothed analysis of symmetric random matrices with continuous distributions 2012 Brendan Farrell
Roman Vershynin
+ Smoothed analysis of symmetric random matrices with continuous distributions 2012 Brendan Farrell
Roman Vershynin
+ Universality of Random Matrices With Dependent Entries 2018 Ziliang Che
+ PDF On the singularity of random matrices with independent entries 2008 Laurent Bruneau
François Germinet
+ Non-stationary version of Furstenberg Theorem on random matrix products 2022 Anton Gorodetski
Victor Kleptsyn
+ Matrix Algebra and Random Matrices 2019 Daniel S. Wilks
+ PDF Smoothed analysis of symmetric random matrices with continuous distributions 2015 Brendan Farrell
Roman Vershynin
+ On random $\pm 1$ matrices: Singularity and Determinant 2004 Terence Tao
Van Vu
+ PDF Random matrices: Probability of normality 2019 Andrei Deneanu
Van Vu
+ Random Matrices: The circular Law 2007 Terence Tao
Van Vu
+ The eigenvalues of random symmetric matrices 1981 Zoltán Füredi
János Komlós
+ Singularity of random symmetric matrices -- simple proof 2020 Asaf Ferber