Mapping between Hamiltonians with attractive and repulsive potentials on a lattice

Type: Article

Publication Date: 2010-10-05

Citations: 19

DOI: https://doi.org/10.1103/physreva.82.044101

Abstract

Through a simple and exact analytical derivation, we show that for a particle on a lattice, there is a one-to-one correspondence between the spectra in the presence of an attractive potential $\hat{V}$ and its repulsive counterpart $-\hat{V}$. For a Hermitian potential, this result implies that the number of localized states is the same in both, attractive and repulsive, cases although these states occur above (below) the band-continnum for the repulsive (attractive) case. For a $\mP\mT$-symmetric potential that is odd under parity, our result implies that in the $\mP\mT$-unbroken phase, the energy eigenvalues are symmetric around zero, and that the corresponding eigenfunctions are closely related to each other.

Locations

  • Physical Review A - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The essential spectrum and bound states of $N$-body problem in an optical lattice 2014 Shokhrukh Yu. Kholmatov
Zahriddin Muminov
+ PDF Chat The similarity of attractive and repulsive forces on a lattice 2015 Marjan Mirahmadi
Amir H. Fatollahi
Mohammad Khorrami
+ Spectral properties of a two-particle Hamiltonian on a lattice 2013 M. I. Muminov
A. M. Khurramov
+ PDF Chat On the Lattice Potential KP Equation 2020 Cewen Cao
Xiaoxue Xu
Da‐jun Zhang
+ PDF Chat Phase structure for lattice fermions with flavored chemical potential terms 2012 Tatsuhiro Misumi
+ Engineering skin effect across a junction of Hermitian and non-Hermitian lattice 2023 Ranjan Modak
+ PDF Chat Non-Hermitian scattering on a tight-binding lattice 2020 Phillip C. Burke
Jan Wiersig
Masudul Haque
+ PDF Chat Floquet topological phase in a generalized <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric lattice 2020 Elizabeth Noelle Blose
+ PDF Chat Anomalous spectrum in a non-Hermitian quasiperiodic chain 2024 Soumya Ranjan Padhi
Sanchayan Banerjee
Tanay Nag
Tapan Mishra
+ PDF Chat Supersymmetry on a lattice and Dirac fermions in a random vector potential 2000 Ikuo Ichinose
+ THRESHOLD EFFECTS IN THE SPECTRUM OF THE ONE-PARTICLE SCHRÖDINGER OPERATOR ON A LATTICE 2020 S N Lakaev
S h I Khamidov
+ Localization transitions in non-Hermitian quasiperiodic lattice 2023 Aruna Prasad Acharya
Sanjoy Datta
+ The existence of an isolated band in a system of three particles in an optical lattice 2015 Gianfausto Dell’Antonio
S. N. Lakaev
A. M. Khalkhuzhaev
+ Spectrum of a three-particle model Hamiltonian on a one-dimensional lattice with non-local potentials 2023 Tulkin H. Rasulov
Elyor B. Dilmurodov
Khilola G. Khayitova
+ The Existence and location of eigenvalues of the one particle Hamiltonians on lattices 2016 Saidalhmat Lakaev
+ Essential and discrete spectrum of a three-particle lattice Hamiltonian with non-local potentials 2014 Tulkin H. Rasulov
Зилола Дурдимуротовна Расулова
+ PDF Chat Localization transitions in a non-Hermitian quasiperiodic lattice 2024 Aruna Prasad Acharya
Sanjoy Datta
+ PDF Chat Symmetry-protected localized states at defects in non-Hermitian systems 2019 Ya-Jie Wu
Junpeng Hou
+ THE EXISTENCE OF EIGENVALUES OF THE ONE-PARTICLE SCHRÖDINGER OPERATOR ON A LATTICE 2021 S h I Khamidov
+ Two dimensional lattice with an imaginary magnetic field 2023 Tomoki Ozawa
Tomoya Hayata

Works That Cite This (16)

Action Title Year Authors
+ PDF Chat Degrees and signatures of broken<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:mrow></mml:math>symmetry in nonuniform lattices 2011 Derek D. Scott
Yogesh N. Joglekar
+ PDF Chat Robust<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:mrow></mml:math>-symmetric chain and properties of its Hermitian counterpart 2011 Yogesh N. Joglekar
Avadh Saxena
+ PDF Chat Observation of two 𝓟𝓣 transitions in an electric circuit with balanced gain and loss 2020 Tishuo Wang
Jianxiong Fang
Zhongyi Xie
Nenghao Dong
Yogesh N. Joglekar
Zixin Wang
J. S. Li
Le Luo
+ PDF Chat Parity-time symmetric systems with memory 2021 Zachary Cochran
Avadh Saxena
Yogesh N. Joglekar
+ Non-Hermiticity in quantum nonlinear optics through symplectic transformations 2024 Ross Wakefield
Anthony Laing
Yogesh N. Joglekar
+ Non-Hermiticity in quantum nonlinear optics through symplectic transformations 2023 Ross Wakefield
Anthony Laing
Yogesh N. Joglekar
+ PT-symmetry enabled stable modes in multi-core fiber 2023 Tamara Gratcheva
Yogesh N. Joglekar
Jay Gopalakrishnan
+ PDF Chat Optical waveguide arrays: quantum effects and PT symmetry breaking 2013 Yogesh N. Joglekar
Clinton Thompson
Derek D. Scott
Gautam Vemuri
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math>-symmetry breaking with divergent potentials: Lattice and continuum cases 2014 Yogesh N. Joglekar
Derek D. Scott
Avadh Saxena
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math>restoration via increased loss and gain in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math>-symmetric Aubry-André model 2014 Charles H. Liang
Derek D. Scott
Yogesh N. Joglekar