Area integral estimates for the biharmonic operator in Lipschitz domains

Type: Article

Publication Date: 1991-01-01

Citations: 24

DOI: https://doi.org/10.1090/s0002-9947-1991-1024776-7

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D subset-of-or-equal-to bold upper R Superscript n"> <mml:semantics> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>⊆<!-- ⊆ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">D \subseteq {{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a Lipschitz domain and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u"> <mml:semantics> <mml:mi>u</mml:mi> <mml:annotation encoding="application/x-tex">u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a function biharmonic in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding="application/x-tex">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, i.e., <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta normal upper Delta u equals 0"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\Delta \Delta u= 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding="application/x-tex">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that the nontangential maximal function and the square function of the gradient of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u"> <mml:semantics> <mml:mi>u</mml:mi> <mml:annotation encoding="application/x-tex">u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> have equivalent <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p Baseline left-parenthesis d mu right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>d</mml:mi> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}(d\mu )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norms, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d mu element-of upper A Superscript normal infinity Baseline left-parenthesis d sigma right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>A</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:mspace width="thinmathspace" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>d</mml:mi> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">d\mu \in {A^\infty }\,(d\sigma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d sigma"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">d\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is surface measure on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="partial-differential upper D"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi> <mml:mi>D</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\partial D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Sharp estimates for the nontangential maximal function and the Lusin area function in Lipschitz domains 1989 Rodrigo Bañuelos
Charles N. Moore
+ PDF Chat On functions subharmonic in a Lipschitz domain 1978 Jang-Mei Wu
+ PDF Chat Area Integral Estimates for the Biharmonic Operator in Lipschitz Domains 1991 Jill Pipher
Gregory C. Verchota
+ PDF Chat Differentiability criteria and harmonic functions on 𝐵ⁿ 1983 Patrick Ahern
Kenneth D. Johnson
+ Integrability of superharmonic functions, uniform domains, and Hölder domains 1999 Yasuhiro Gotoh
+ PDF Chat Interpolation between Sobolev and between Lipschitz spaces of analytic functions on starshaped domains 1989 Emil J. Straube
+ Weighted estimates in 𝐿² for Laplace’s equation on Lipschitz domains 2004 Zhongwei Shen
+ PDF Chat Composition operators on analytic Lipschitz spaces 1993 Kevin M. Madigan
+ The co-area formula for Sobolev mappings 2002 Jan Malý
David Swanson
William P. Ziemer
+ PDF Chat A uniqueness theorem for superharmonic functions in 𝑅ⁿ 1982 Joel L. Schiff
+ On smoothing of plurisubharmonic functions on unbounded domains 2022 Tobias Harz
+ PDF Chat Subharmonic functions outside a compact set in 𝑅ⁿ 1982 Victor Anandam
+ PDF Chat The convexity of a domain and the superharmonicity of the signed distance function 1985 D. H. Armitage
Ü. Kuran
+ Local and global 𝐶-regularity 2007 Nihat Gökhan Göğüş
+ PDF Chat Lipschitz continuity for weighted harmonic functions in the unit disc 2019 Anders Olofsson
+ Representation of $\alpha$-harmonic functions in Lipschitz domains 1999 Krzysztof Bogdan
+ PDF Chat Density points and bi-Lipschitz functions in 𝑅^{𝑚} 1992 Zoltán Buczolich
+ PDF Chat On the constant of Lipschitz approximability 2024 Rubén Medina
+ PDF Chat Area integral estimates for caloric functions 1989 R. M. Brown
+ Superposition operator in Sobolev spaces on domains 2000 Denis A. Labutin