Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature

Type: Article

Publication Date: 2006-01-24

Citations: 32

DOI: https://doi.org/10.3842/sigma.2006.010

Abstract

A family of classical superintegrable Hamiltonians, depending on an arbitrary radial function, which are defined on the 3D spherical, Euclidean and hyperbolic spaces as well as on the (2+1)D anti-de Sitter, Minkowskian and de Sitter spacetimes is constructed.Such systems admit three integrals of the motion (besides the Hamiltonian) which are explicitly given in terms of ambient and geodesic polar coordinates.The resulting expressions cover the six spaces in a unified way as these are parametrized by two contraction parameters that govern the curvature and the signature of the metric on each space.Next two maximally superintegrable Hamiltonians are identified within the initial superintegrable family by finding the remaining constant of the motion.The former potential is the superposition of a (curved) central harmonic oscillator with other three oscillators or centrifugal barriers (depending on each specific space), so that this generalizes the Smorodinsky-Winternitz system.The latter one is a superposition of the Kepler-Coulomb potential with another two oscillators or centrifugal barriers.As a byproduct, the Laplace-Runge-Lenz vector for these spaces is deduced.Furthermore both potentials are analysed in detail for each particular space.Some comments on their generalization to arbitrary dimension are also presented.

Locations

  • Symmetry Integrability and Geometry Methods and Applications - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • The scientific electronic library of periodicals of the National Academy of Sciences of Ukraine (National Academy of Sciences of Ukraine) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Superintegrability on the three-dimensional spaces with curvature. Oscillator-related and Kepler-related systems on the sphere S <sup>3</sup> and on the hyperbolic space H <sup>3</sup> 2021 José F. Cariñena
Manuel F. Rañada
Mariano Santander
+ Superintegrability on the 3-dimensional spaces with curvature. Oscillator-related and Kepler-related systems on the Sphere $S^3$ and on the Hyperbolic space $H^3$ 2021 José F. Cariñena
Manuel F. Rañada
Mariano Santander
+ PDF Chat Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform 2011 Ángel Ballesteros
Alberto Enciso
Francisco J. Herranz
O. Ragnisco
D Riglioni
+ More on superintegrable models on spaces of constant curvature 2022 Cezary Gonera
Joanna Gonera
Javier de Lucas
Wioletta Szczesek
Bartosz Zawora
+ PDF Chat Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature 2006 Ángel Ballesteros
Francisco J. Herranz
+ PDF Chat New superintegrable models with position-dependent mass from Bertrand's Theorem on curved spaces 2011 Ángel Ballesteros
Alberto Enciso
Francisco J. Herranz
O. Ragnisco
D Riglioni
+ PDF Chat On the Extended-Hamiltonian Structure of Certain Superintegrable Systems on Constant-Curvature Riemannian and Pseudo-Riemannian Surfaces 2020 Claudia Maria Chanu
Giovanni Rastelli
+ PDF Chat Maximal superintegrability on<i>N</i>-dimensional curved spaces 2003 Ángel Ballesteros
Francisco J. Herranz
Mariano Santander
Teresa Sanz-Gil
+ PDF Chat Maximal superintegrability of the generalized Kepler–Coulomb system on<i>N</i>-dimensional curved spaces 2009 Ángel Ballesteros
Francisco J. Herranz
+ PDF Chat The Tremblay–Turbiner–Winternitz system on spherical and hyperbolic spaces: superintegrability, curvature-dependent formalism and complex factorization 2014 Manuel F. Rañada
+ PDF Chat Maximally superintegrable Smorodinsky–Winternitz systems on the 𝑁-dimensional sphere and hyperbolic spaces 2004 Francisco J. Herranz
Ángel Ballesteros
Mariano Santander
Teresa Sanz-Gil
+ PDF Chat Superintegrable systems on 3-dimensional curved spaces: Eisenhart formalism and separability 2017 José F. Cariñena
Francisco J. Herranz
Manuel F. Rañada
+ The Kepler problem on 3D spaces of variable and constant curvature from quantum algebras 2006 Ángel Ballesteros
Francisco J. Herranz
+ Superintegrability of the Post-Winternitz system on spherical and hyperbolic spaces 2015 Manuel F. Rañada
+ PDF Chat Integrable potentials on spaces with curvature from quantum groups 2005 Ángel Ballesteros
Francisco J. Herranz
O. Ragnisco
+ The Kepler problem on 3D spaces of variable and constant curvature from quantum algebras 2006 Ángel Ballesteros
Francisco J. Herranz
+ PDF Chat On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models 2022 Miguel Á. Rodríguez
Piergiulio Tempesta
+ On higher-dimensional superintegrable systems: A new family of classical and quantum Hamiltonian models 2022 Miguel Á. Rodríguez
Piergiulio Tempesta
+ PDF Chat A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum 2010 O. Ragnisco
+ PDF Chat SUPERINTEGRABLE QUANTUM OSCILLATOR AND KEPLER-COULOMB SYSTEMS ON CURVED SPACES 2013 Ángel Ballesteros
Alberto Enciso
Francisco J. Herranz
O. Ragnisco
D Riglioni

Works That Cite This (26)

Action Title Year Authors
+ PDF Chat The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach. II 2012 José F. Cariñena
Manuel F. Rañada
Mariano Santander
+ Curvature as an Integrable Deformation 2019 Ángel Ballesteros
Alfonso Blasco
Francisco J. Herranz
+ Parabolic Coordinates and the Hydrogen Atom in Spaces H_{3} and S_{3} 2011 В. М. Редьков
Е. М. Ovsiyuk
+ PDF Chat A maximally superintegrable system on an -dimensional space of nonconstant curvature 2007 Ángel Ballesteros
Alberto Enciso
Francisco J. Herranz
O. Ragnisco
+ PDF Chat Classical ladder functions for Rosen–Morse and curved Kepler–Coulomb systems 2019 L. Delisle-Doray
Véronique Hussin
Ş. Kuru
J. Negro
+ PDF Chat The anisotropic oscillator on the 2D sphere and the hyperbolic plane 2013 Ángel Ballesteros
Francisco J. Herranz
Fabio Musso
+ Lie systems, lie symmetries and reciprocal transformations 2015 Cristina Sardón
+ Quantization of a nonlinear oscillator as a model of the harmonic oscillator on spaces of constant curvature: One- and two-dimensional systems 2008 José F. Cariñena
Manuel F. Rañada
Mariano Santander
+ PDF Chat A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog 2007 José F. Cariñena
Manuel F. Rañada
Mariano Santander
+ PDF Chat The Tremblay–Turbiner–Winternitz system on spherical and hyperbolic spaces: superintegrability, curvature-dependent formalism and complex factorization 2014 Manuel F. Rañada

Works Cited by This (27)

Action Title Year Authors
+ Integrable Systems of Classical Mechanics and Lie Algebras 1990 A. M. Perelomov
+ SUPERINTEGRABLE DEFORMATIONS OF THE SMORODINSKY-WINTERNITZ HAMILTONIAN 2004 Ángel Ballesteros
Francisco J. Herranz
Fabio Musso
O. Ragnisco
+ PDF Chat Maximally superintegrable Smorodinsky–Winternitz systems on the 𝑁-dimensional sphere and hyperbolic spaces 2004 Francisco J. Herranz
Ángel Ballesteros
Mariano Santander
Teresa Sanz-Gil
+ PDF Chat Integrable potentials on spaces with curvature from quantum groups 2005 Ángel Ballesteros
Francisco J. Herranz
O. Ragnisco
+ PDF Chat Completeness of superintegrability in two-dimensional constant-curvature spaces 2001 E. G. Kalnins
J. M. Kress
G. S. Pogosyan
Warner A. Miller
+ PDF Chat Path-integral approach for superintegrable potentials on the three-dimensional hyperboloid 1997 C. Grosche
+ On some properties of harmonic oscillator on spaces of constant curvature 2002 Manuel F. Rañada
Mariano Santander
+ PDF Chat Contractions of Lie algebras and separation of variables 1996 A. A. Izmest’ev
G. S. Pogosyan
A. N. Sissakian
P. Winternitz
+ PDF Chat Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2 2005 José F. Cariñena
Manuel F. Rañada
Mariano Santander
+ PDF Chat Path Integral Discussion for Smorodinsky-Winternitz Potentials: I. Two- and Three Dimensional Euclidean Space 1995 C. Grosche
G. S. Pogosyan
A. N. Sissakian