An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space

Type: Article

Publication Date: 1997-01-01

Citations: 146

DOI: https://doi.org/10.1214/aop/1024404285

Abstract

We prove an isoperimetric inequality on the discrete cube which is the precise analog of a logarithmic inequality due to Talagrand. As a consequence, the Gaussian isoperimetric inequality is derived.

Locations

  • The Annals of Probability - View - PDF

Similar Works

Action Title Year Authors
+ The Isoperimetric Inequality on the Sphere 1935 Tibor Radó
+ On the isoperimetric deficit in Gauss space 2011 Andrea Cianchi
Nicola Fusco
Francesco Maggi
Aldo Pratelli
+ Isoperimetric Inequality in the Plane 2004 Roberto Monti
Daniele Morbidelli
+ PDF Chat A Generalization of the Isoperimetric Inequality on the 2-Sphere 1974 Joel L. Weiner
+ Another Simple and Elementary Proof of the Classical Isoperimetric Inequality 2005 Yang Juan-na
+ Another Simple and Elementary Proof of the Classical Isoperimetric Inequality 2005 PANSheng-liang
YANGJuan-ha
+ A Note on the Isoperimetric Inequality 2001 Richard E. Bayne
Myung H. Kwack
+ PDF Chat An Inequality Related to the Isoperimetric Inequality 1992 L. H. Loomis
H. Whitney
+ PDF Chat An inequality related to the isoperimetric inequality 1949 Lynn H. Loomis
Hassler Whitney
+ The Isoperimetric Inequality and Related Inequalities 1989 Heinz Hopf
+ A quantitative isoperimetric inequality on the sphere 2016 Verena Bögelein
Frank Duzaar
Nicola Fusco
+ The Isoperimetric inequality 2002 S. Kesavan
+ The isoperimetric inequality 1978 Robert Osserman
+ The Isoperimetric Inequality 2008 O. Bottema
Reinie Erné
+ The Isoperimetric Inequality 2024 Simon Brendle
Michael Eichmair
+ From the triangle inequality to the isoperimetric inequality 2014 S. Kesavan
+ Talagrand's Isoperimetric Inequality 2009 Devdatt Dubhashi
Alessandro Panconesi
+ Isoperimetric Inequalities for Faces of the Cube and the Grid 1990 B. Bollobás
A. J. Radcliffe
+ PDF Chat An Isoperimetric Inequality 1964 F. J. Almgren
+ An Isoperimetric Inequality 1983 M. S. Klamkin