On the Hardy–Littlewood majorant problem for random sets

Type: Article

Publication Date: 2008-09-11

Citations: 23

DOI: https://doi.org/10.1016/j.jfa.2008.06.005

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal of Functional Analysis - View

Similar Works

Action Title Year Authors
+ On the Hardy-Littlewood majorant problem for random sets 2002 Gerd Mockenhaupt
Wilhelm Schlag
+ On the Hardy--Littlewood majorant problem for arithmetic sets 2015 Ben Krause
Mariusz Mirek
Bartosz Trojan
+ PDF Chat On the Hardy–Littlewood majorant problem 2004 Ben Green
Imre Z. Ruzsa
+ PDF Chat On the Hardy–Littlewood majorant problem for arithmetic sets 2016 Ben Krause
Mariusz Mirek
Bartosz Trojan
+ PDF Chat On the polynomial Hardy–Littlewood inequality 2015 Gustavo Araújo
P. Jiménez-Rodríguez
Gustavo A. Muñoz-Fernández
Daniel Núñez-Alarcón
Daniel Pellegrino
Juan B. Seoane‐Sepúlveda
Diana Serrano-Rodríguez
+ PDF Chat Hardy-Littlewood majorants in function spaces 1965 Tetsuya Shimogaki
+ Hardy-Littlewood Numbers in Short Intervals 1995 Alberto Perelli
J. Pintz
+ PDF Chat Sharp Bounds on the Distribution of the Hardy-Littlewood Maximal Function 1963 David Blackwell
Lester E. Dubins
+ PDF Chat Sharp bounds on the distribution of the Hardy-Littlewood maximal function 1963 David Blackwell
Lester E. Dubins
+ A metric discrepancy result for the Hardy–Littlewood–Pólya sequences 2008 Katusi Fukuyama
Keisuke Nakata
+ Hardy–Littlewood inequalities 2009 Ravi P. Agarwal
Shusen Ding
Craig A. Nolder
+ Hardy-Littlewood Constants 2003 Keith Conrad
+ Hardy and Littlewood Type Inequalities 2016 Ravi P. Agarwal
Donal O’Regan
S. H. Saker
+ On the Supremum of Random Dirichlet Polynomials 2007 Mikhail Lifshits
Michel Weber
+ PDF Chat Roth's theorem and the Hardy–Littlewood majorant problem for thin subsets of primes 2023 Leonidas Daskalakis
+ On the Hardy-Ramanujan Theorem 2023 Benjamin Durkan
+ Roth's Theorem and the Hardy--Littlewood majorant problem for thin subsets of primes 2022 Leonidas Daskalakis
+ Estimates for norms of random polynomials 2001 Radu T. Trîmblitas
Gheorge Coman
+ Hardy and Littlewood theorems and the Bergman distance 2022 Marijan Marković
+ PDF Chat A Note on Random Polynomials 1970 Richard G. Wood