An implicit function theorem without differentiability

Type: Article

Publication Date: 1978-01-01

Citations: 16

DOI: https://doi.org/10.1090/s0002-9939-1978-0488116-3

Abstract

We combine a “global” version of the classical inverse function theorem with Schauder’s fixed point theorem to investigate the existence and continuity properties of a function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper F comma x right-parenthesis right-arrow eta left-parenthesis upper F comma x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>η<!-- η --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(F,x) \to \eta (F,x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="eta left-parenthesis upper F comma x right-parenthesis equals upper F left-parenthesis eta left-parenthesis upper F comma x right-parenthesis comma x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>η<!-- η --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>η<!-- η --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\eta (F,x) = F(\eta (F,x),x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ An implicit function theorem 1978 Krisorn Jittorntrum
+ An Implicit Function Theorem in Non-Smooth Case 2018 Р.А. Хачатрян
+ A new proof of the implicit function theorem 2016 Maoan Han
Lijuan Sheng
+ 1472. A note on implicit functions 1940 E. H. N.
+ An implicit function theorem: Comment 1980 Shinya Kumagai
+ PDF Chat The implicit function theorem: history, theory, and applications 2003
+ The Implicit Function Theorem 2020 Jim Agler
John E. McCarthy
N. J. Young
+ Implicit function theorem and strong properties 2022 Leslie Hogben
Jephian Lin
Bryan L. Shader
+ PDF Chat Coupled Fixed Point Theorems with New Implicit Relations and an Application 2014 G. V. R. Babu
P. D. Sailaja
+ Implicit functions 2013 Ken Binmore
Joan E. Davies
+ A result on implicit functions 1996 Giuseppe Da Prato
Jerzy Zabczyk
+ PDF Chat Integral equations, implicit functions, and fixed points 1996 T. A. Burton
+ PDF Chat Functions with a concave modulus of continuity 1974 Helen E. White
+ Implicit function theorem without a priori assumptions about normality 2006 A. V. Arutyunov
+ The Implicit Function Theorem 2019 Vittorino Pata
+ Robinson’s implicit function theorem and its extensions 2007 Asen L. Dontchev
R. T. Rockafellar
+ PDF Chat An Implicit Function Theorem without Differentiability 1978 J. Warga
+ Implicit Function Theorems for Continuous Mappings and Their Applications 2023 A. V. Arutyunov
S. E. Zhukovskiy
Boris S. Mordukhovich
+ The Implicit Function Theorem and the Elementary Closure Theorem 1983 Lamberto Cesari
+ Introduction and Equation-Solving Background 2014 Asen L. Dontchev
R. T. Rockafellar