Robust Solutions to Least-Squares Problems with Uncertain Data

Type: Article

Publication Date: 1997-10-01

Citations: 1038

DOI: https://doi.org/10.1137/s0895479896298130

Abstract

We consider least-squares problems where the coefficient matrices A,b are unknown but bounded. We minimize the worst-case residual error using (convex) second-order cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpreted as a Tikhonov regularization procedure, with the advantage that it provides an exact bound on the robustness of solution and a rigorous way to compute the regularization parameter. When the perturbation has a known (e.g., Toeplitz) structure, the same problem can be solved in polynomial-time using semidefinite programming (SDP). We also consider the case when A,b are rational functions of an unknown-but-bounded perturbation vector. We show how to minimize (via SDP) upper bounds on the optimal worst-case residual. We provide numerical examples, including one from robust identification and one from robust interpolation.

Locations

  • SIAM Journal on Matrix Analysis and Applications - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Robust least squares and applications 2002 Laurent El Ghaoui
HervÃĐ Lebret
+ PDF Chat Robust Solutions to Uncertain Semidefinite Programs 1998 Laurent El Ghaoui
François Oustry
HervÃĐ Lebret
+ Robust Optimization for Models with Uncertain Second-Order Cone and Semidefinite Programming Constraints 2021 Jianzhe Zhen
Frans J. C. T. de Ruiter
Ernst Roos
Dick den Hertog
+ A Novel Robust Approach to Least Squares Problems with Bounded Data Uncertainties 2012 Nargiz Kalantarova
Mehmet A. Donmez
SÞleyman S. Kozat
+ Robust Optimization 1997 Laurent El Ghaoui
+ Robust optimization for models with uncertain SOC and SDP constraints 2020 Jianzhe Zhen
Frans J. C. T. de Ruiter
Ernst Roos
Dick den Hertog
+ PDF Chat Linear shrinkage for optimization in high dimensions 2024 Naqi Huang
Nestor Parolya
Theresia van Essen
+ On Regularization of Least Square Problems via Quadratic Constraints 2007 Majid Fozunbal
+ Solving linear quadratic control problem with robust convex quadratically constrains via infinite-dimensional second order cone programming = āļāļēāļĢāđāļāđ‰āļ›āļąāļāļŦāļēāļ„āļ§āļšāļ„āļļāļĄāļāļģāļĨāļąāļ‡āļŠāļ­āļ‡āđ€āļŠāļīāļ‡āđ€āļŠāđ‰āļ™āļ—āļĩāđˆāļĄāļĩāļ‚āđ‰āļ­āļˆāļģāļāļąāļ”āļ—āļ™āļ—āļēāļ™āļāļģāļĨāļąāļ‡āļŠāļ­āļ‡āļšāļ™āđ€āļ‹āļ•āļ™āļđāļ™ āđ‚āļ”āļĒāļ§āļīāļ˜āļĩāļāļĢāļ§āļĒāļ­āļąāļ™āļ”āļąāļšāļŠāļ­āļ‡āļ—āļĩāđˆāļĄāļĩāļĄāļīāļ•āļīāļ­āļ™āļąāļ™āļ•āđŒ / Phannipa Kabcome 2010 Phannipa Kabcome
+ Exploiting Sparsity in the Sum-of-Squares Approximations to Robust Semidefinite Programs 2008 Tanagorn Jennawasin
Yasuaki Oishi
+ Robust Least Squares Methods Under Bounded Data Uncertainties 2013 N. Denizcan Vanli
Mehmet A. Donmez
SÞleyman S. Kozat
+ Robust Least Squares Methods Under Bounded Data Uncertainties 2013 N. Denizcan Vanli
M A. Donmez
SÞleyman S. Kozat
+ Applications of second-order cone programming 1998 Miguel Sousa Lobo
Lieven Vandenberghe
Stephen Boyd
HervÃĐ Lebret
+ PDF Chat SOCP relaxation bounds for the optimal subset selection problem applied to robust linear regression 2015 Salvador Flores
+ PDF Chat From Sparse Signals to Sparse Residuals for Robust Sensing 2011 Vassilis Kekatos
Georgios B. Giannakis
+ A Stable and Efficient Algorithm for the Indefinite Linear Least-Squares Problem 1998 S. Chandrasekaran
Ming Gu
Ali H. Sayed
+ First-Order Algorithms for Robust Optimization Problems via Convex-Concave Saddle-Point Lagrangian Reformulation 2024 Krzysztof Postek
Shimrit Shtern
+ Support vector regression with noisy data: a second order cone programming approach 2007 Theodore B. TrafaliĖ‡s
Samir A. Alwazzi
+ Inverse-Optimization-Based Uncertainty Set for Robust Linear Optimization 2023 Ayaka Ueta
Mirai Tanaka
Ken Kobayashi
Kazuhide Nakata
+ PDF Chat Rank minimization and applications in system theory 2004 Maryam Fazel
H. Hindi
Stephen Boyd