Injective modules under flat base change

Type: Article

Publication Date: 1975-01-01

Citations: 14

DOI: https://doi.org/10.1090/s0002-9939-1975-0409439-7

Abstract

It is proved that an injective module after a flat change of base is of pointwise finite injective dimension if and only if all the fibers at points associated to the injective module are Gorenstein rings (or trivial).

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Injective Modules Under Flat Base Change 1975 Hans‐Bjørn Foxby
+ Gorenstein Injective and Gorenstein Flat Dimensions Under Base Change 2003 Leila Khatami
Siamak Yassemi
+ PDF Chat Injective modules under change of rings 1965 Ernst Snapper
+ PDF Chat Injective Modules Under Change of Rings 1965 Ernst Snapper
+ Gorenstein Dimensions under Base Change 2002 Leila Khatami
Siamak Yassemi
+ Flat modules, injective modules and quotient rings 1971 Kiiti Morita
+ PDF Chat Minimal Injective Resolutions Under Flat Base Change 1977 Hans‐Bjørn Foxby
Anders Thorup
+ Ω-Gorenstein Projective, Injective and Flat Modules 2011 Yang Xiaoyan
Zhongkui Liu
+ PDF Chat Structure of flat covers of injective modules 2003 Sh. Payrovi
M. Akhavizadegan
+ A Generalization of Gorenstein Injective and Flat Modules 2016 Lu Bo
+ PDF Chat GORENSTEIN PROJECTIVE, INJECTIVE AND FLAT MODULES 2009 Zhongkui Liu
Yang Xiaoyan
+ Injective endomorphism modules 2009 Theodore G. Faticoni
+ PDF Chat Flat Covers of Modules 1996 Jinzhong Xu
+ PDF Chat C-Gorenstein projective, injective and flat modules 2010 Xiao Yan Yang
Zhong Kui Liu
+ The flat dimensions of injective modules 1993 Nanqing Ding
Jianlong Chen
+ Injective hulls of flat modules 1980 T. Cheatham
Edgar E. Enochs
+ PDF Chat Gorenstein dimensions in trivial ring extensions 2009 Najib Mahdou
Khalid Ouarghi
+ Report on injective modules 1965 Cheng-Chiang Tsai
+ A Note on Duality of Flat Module and Injective Modules 2007 Fan Zheng-en
+ INJECTIVE CONVERS UNDER CHANGE OF RINGS 2001 Yeong Moo Song
Hae Sik Kim