Commutative rings in which every prime ideal is contained in a unique maximal ideal

Type: Article

Publication Date: 1971-01-01

Citations: 122

DOI: https://doi.org/10.1090/s0002-9939-1971-0282962-0

Abstract

The class of rings with 1 satisfying the properties of the title is characterized by some separation properties on the prime and maximal spectra, and, in such rings, the map which sends every prime ideal into the unique maximal ideal containing it, is continuous. These results are applied to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to obtain Stone’s theorem and the Gelfand-Kolmogoroff theorem. As a side result, the methods give new information on the mapping <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P right-arrow upper P intersection upper C Superscript asterisk Baseline left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>P</mml:mi> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P \to P \cap {C^ \ast }(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<italic>P</italic> a prime ideal of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>).

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Minimal primes of ideals and integral ring extensions 1973 William Heinzer
+ PDF Chat A characterization of prime Noetherian P. I. rings and a theorem of Mori-Nagata 1979 Amiram Braun
+ PDF Chat A theorem for prime rings 1979 Anthony Richoux
+ PDF Chat Prime ideals in polynomial rings over one-dimensional domains 1995 William Heinzer
Sylvia Wiegand
+ The kernels of radical homomorphisms and intersections of prime ideals 2007 Hung Viet Pham
+ PDF Chat On the ideals of a Noetherian ring 1985 J. T. Stafford
+ PDF Chat Uniqueness of generators of principal ideals in rings of continuous functions 1970 M. J. Canfell
+ PDF Chat Commutative regular rings without prime model extensions 1975 Dan Saracino
Volker Weispfenning
+ PDF Chat Cardinalities of prime spectra of precompletions 2021 Erica Barrett
Emil Graf
S. Loepp
Kimball Strong
Sharon Zhang
+ PDF Chat Maximal ideals in Laurent polynomial rings 1992 Budh Nashier
+ A prime analogue Erdős-Pomerance result for Drinfeld modules with arbitrary endomorphism rings 2020 Wentang Kuo
David Tweedle
+ PDF Chat Prime ideals in a large class of nonassociative rings 1971 Paul John Zwier
+ Products of ideals and Golod rings 2022 Keller VandeBogert
+ PDF Chat On prime ideals with generic zero 𝑥ᵢ=𝑡^{𝑛ᵢ} 1975 Henrik Bresinsky
+ PDF Chat Prime ideals in two-dimensional polynomial rings 1989 William Heinzer
Sylvia Wiegand
+ PDF Chat The theory of 𝑄-rings 1974 Eben Matlis
+ PDF Chat On the primitivity of polynomial rings with nonprimitive coefficient rings 1986 Timothy J. Hodges
+ PDF Chat Contracted ideals and purity for ring extensions 1975 J. W. Brewer
Douglas L. Costa
+ PDF Chat Sums of semiprime, 𝑧, and 𝑑𝑙-ideals in a class of 𝑓-rings 1990 Suzanne Larson
+ PDF Chat Ideals and centralizing mappings in prime rings 1982 Joseph H. Mayne