An asymptotic representation for the Riemann zeta function on the critical line

Type: Article

Publication Date: 1994-09-08

Citations: 14

DOI: https://doi.org/10.1098/rspa.1994.0121

Locations

  • Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences - View

Similar Works

Action Title Year Authors
+ PDF Chat An asymptotic representation for $\zeta (\frac{1}{2} + it)$ 1997 R. B. Paris
S. Cang
+ An asymptotic approximation for the Riemann zeta function revisited 2022 R B Paris
+ A Generalisation of an Expansion for the Riemann Zeta Function Involving Incomplete Gamma Functions 2009 R. B. Paris
+ A uniform asymptotic expansion for the incomplete gamma functions revisited 2016 R. B. Paris
+ Riemann Zeta Function. Chi(s)via analytic Continuation inside an infinite Loop 2013 Renaat Van Malderen
+ Series expansions for the Riemann zeta function 2023 Alexey N. Kuznetsov∥
+ The Incomplete Beta Function as a Contour Integral and a Quickly Converging Series for Its Inverse 1950 M. E. Wise
+ An expansion of the Riemann Zeta function on the critical line 2021 Bernard Candelpergher
+ Identifying the Riemann Zeta function as a smoothed version of the Riemann Siegel function off the critical line 2016 John Martin
+ An Asymptotic Expansion of the Square of the Riemann Zeta-Function 1997 Yoichi Motohashi
+ Uniform asymptotic approximations for incomplete Riemann Zeta functions 2005 T. M. Dunster
+ An asymptotic expansion for the Stieltjes constants 2015 R. B. Paris
+ An improved upper bound for the argument of the Riemann zeta-function on the critical line II 2013 Timothy S. Trudgian
+ An asymptotic expansion for the Stieltjes constants 2015 R. B. Paris
+ PDF Chat Note on the Analytical Continuation of Riemann Zeta Function 2023 Keyang Ding
+ A uniform asymptotic expansion for the incomplete gamma function 2002 R. B. Paris
+ The Riemann-Siegel expansion for the zeta function: high orders and remainders 2017 M. V. BERRY
+ Improved lower bounds > 0 for Riemann Zeta function off the critical line using derivatives of Re(Riemann Siegel Z) function. 2016 John Martin
+ Improved lower bounds > 0 for Riemann Zeta function off the critical line using derivatives of Re(Riemann Siegel Z) function. 2016 John Martin
+ Improved lower bounds > 0 for Riemann Zeta function off the critical line using derivatives of Re(Riemann Siegel Z) function. 2016 John Martin