Phase Transition of the Heisenberg Antiferromagnet on the Triangular Lattice in a Magnetic Field

Type: Article

Publication Date: 1985-12-01

Citations: 185

DOI: https://doi.org/10.1143/jpsj.54.4530

Locations

  • Journal of the Physical Society of Japan - View

Similar Works

Action Title Year Authors
+ Mean Field Analysis for Successive Phase Transitions of Heisenberg-Ising Antiferromagnets on the Triangular Lattices 1986 Seiji Miyashita
+ Effect of a Magnetic Field on the Phase Transitions in the Heisenberg Model on a Triangular Lattice 2021 А. К. Муртазаев
М. К. Бадиев
М. К. Рамазанов
М. А. Магомедов
+ Phase Transitions of the Heisenberg Antiferromagnet on a Distorted Triangular Lattice 2017 Alisa Shimada
+ PDF Chat Phase diagram of the classical Heisenberg antiferromagnet on a triangular lattice in an applied magnetic field 2011 Luis Seabra
Tsutomu Momoi
Philippe Sindzingre
Nic Shannon
+ PDF Chat Влияние магнитного поля на фазовые переходы в модели Гейзенберга на треугольной решетке 2021 А. К. Муртазаев
М. К. Бадиев
М. К. Рамазанов
М.А. Магомедов
+ Interplay of anisotropy and frustration: Triple transitions in a triangular-lattice antiferromagnet 2009 Pierre-Éric Melchy
M. E. Zhitomirsky
+ PDF Chat Phase transitions induced by easy-plane anisotropy in the classical Heisenberg antiferromagnet on a triangular lattice: A Monte Carlo simulation 1998 Luca Capriotti
Ruggero Vaia
Alessandro Cuccoli
V. Tognetti
+ Monte Carlo simulations on a triangular Ising antiferromagnet with nearest and next-nearest interactions 2005 E. Rastelli
S. Regina
A. Tassi
+ PDF Chat Phase transitions in a triangular Blume-Capel antiferromagnet 2013 M. Žukovič
A. Bobák
+ PDF Chat First-Order Transition to Incommensurate Phase with Broken Lattice Rotation Symmetry in Frustrated Heisenberg Model 2008 Ryo Tamura
Naoki Kawashima
+ PDF Chat Magnetic phase diagram, critical behavior, and two-dimensional to three-dimensional crossover in the triangular lattice antiferromagnet<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Rb</mml:mi><mml:mi mathvariant="normal">Fe</mml:mi><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi mathvariant="normal">Mo</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:… 2006 L. E. Svistov
Alex I. Smirnov
L. A. Prozorova
O. A. Petrenko
A. Micheler
N. Büttgen
A. Ya. Shapiro
L. N. Demianets
+ Ferrimagnetism in the Spin-1/2 Heisenberg Antiferromagnet on a Distorted Triangular Lattice 2017 Hiroki Nakano
Tôru Sakai
+ Phase Transition of the S=1/2 Quantum Anisotropic Heisenberg Antiferromagnet on the Triangular Lattice 1995 Nobuo Suzuki
Fumitaka Matsubara
+ PDF Chat Magnetic properties of the two-dimensional Heisenberg model on a triangular lattice 2004 P. Rubin
A. Sherman
+ PDF Chat Three-sublattice skyrmion crystal in the antiferromagnetic triangular lattice 2015 H. D. Rosales
D. C. Cabra
Pierre Pujol
+ PDF Chat Ising dipoles on the triangular lattice 2001 U. Rößler
+ Vortex-Induced Topological Transition of the Bilinear–Biquadratic Heisenberg Antiferromagnet on the Triangular Lattice 2007 Hikaru Kawamura
Atsushi Yamamoto
+ PDF Chat Frustrated Heisenberg antiferromagnets between<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mn /></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn><mml:mn /></mml:math> 2004 Amra Peles
B. W. Southern
+ PDF Chat Unusual dynamics of spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1686" altimg="si19.svg"><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:math> antiferromagnets on the triangular lattice in magnetic field 2023 A. V. Syromyatnikov
+ PDF Chat Magnetic phase diagram of the spin-1 two-dimensional – Heisenberg model on a triangular lattice 2012 P. Rubin
A. Sherman
Michael Schreiber

Works That Cite This (105)

Action Title Year Authors
+ PDF Chat Exact ground state of a frustrated integer-spin modified Shastry-Sutherland model 2012 Johannes Richter
Heinz–Jürgen Schmidt
+ PDF Chat From classical to quantum Kagomé antiferromagnet in a magnetic field 2002 D. C. Cabra
M. D. Grynberg
P. C. W. Holdsworth
Pierre Pujol
+ Effect of a Magnetic Field on the Phase Transitions in the Heisenberg Model on a Triangular Lattice 2021 А. К. Муртазаев
М. К. Бадиев
М. К. Рамазанов
М. А. Магомедов
+ PDF Chat Exact diagonalization and cluster mean-field study of triangular-lattice XXZ antiferromagnets near saturation 2017 Daisuke Yamamoto
Hiroshi Ueda
Ippei Danshita
Giacomo Marmorini
Tsutomu Momoi
Tokuro Shimokawa
+ PDF Chat High-Field ESR and Magnetization of the Triangular Lattice Antiferromagnet NiGa<sub>2</sub>S<sub>4</sub> 2010 Hironori Yamaguchi
Shojiro Kimura
Masayuki Hagiwara
Yusuke Nambu
Satoru Nakatsuji
Y. Maeno
Akira Matsuo
Koichi Kindo
+ PDF Chat A one-third magnetization plateau phase as evidence for the Kitaev interaction in a honeycomb-lattice antiferromagnet 2023 Yanyan Shangguan
Song Bao
Zhao-Yang Dong
Ning Xi
Yipeng Gao
Zhen Ma
Wei Wang
Zhongyuan Qi
Shuai Zhang
Zhentao Huang
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mn>8</mml:mn></mml:msub><mml:msub><mml:mi>MnNb</mml:mi><mml:mn>6</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>24</mml:mn></mml:msub></mml:mrow></mml:math> : A model two-dimensional spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>5</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> triangular lattice antiferromagnet 2019 Ryan Rawl
L. Ge
Zhilun Lu
Zach Evenson
Clarina dela Cruz
Qing Huang
Minseong Lee
Eun Sang Choi
Martin Mourigal
Haidong Zhou
+ PDF Chat Disorder-Induced Mimicry of a Spin Liquid in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>YbMgGaO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2017 Zhenyue Zhu
P. A. Maksimov
Steven R. White
A. L. Chernyshev
+ PDF Chat High-order coupled cluster method study of frustrated and unfrustrated quantum magnets in external magnetic fields 2009 D. J. J. Farnell
Ronald Zinke
J. Schulenburg
Johannes Richter
+ PDF Chat Quantum phase diagram of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math>triangular-lattice antiferromagnet<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>CoSb</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>9</mml:mn></mml:msub></mml:mrow… 2015 G. Koutroulakis
Tiege Zhou
Yoshitomo Kamiya
J. D. Thompson
Haidong Zhou
Cristian D. Batista
S. E. Brown