Orbits in unimodular Hermitian lattices

Type: Article

Publication Date: 1992-01-01

Citations: 1

DOI: https://doi.org/10.1090/s0002-9947-1992-1089419-6

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a unimodular indefinite hermitian lattice over the integers <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German o"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">o</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {o}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of an algebraic number field, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N left-parenthesis upper L comma c right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">N(L,c)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the number of primitive representations of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c element-of German o"> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">o</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">c \in \mathfrak {o}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that are inequalivant modulo the action of the integral special unitary group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper U left-parenthesis upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">SU(L)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The value of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N left-parenthesis upper L comma c right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">N(L,c)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is determined from the local representations via a product formula.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Orbits in Unimodular Hermitian Lattices 1992 Donald G. James
+ Hermitian lattices without a basis of minimal vectors 2008 Byeong Hak Kim
Poo-Sung Park
+ Codes over rings of size four, Hermitian lattices, and corresponding theta functions 2007 Tony Shaska
G. S. Wijesiri
+ Unimodular hermitian lattices in dimension 13 2003 Kanat Abdukhalikov
+ Hermitian lattices and bounds in K-theory of algebraic integers 2013 Eva Bayer‐Fluckiger
Vincent Emery
Julien Houriet
+ PDF Chat Spinor genera of unimodular 𝑍-lattices in quadratic fields 1977 A. G. Earnest
+ PDF Chat Unimodular commutators 1987 Morris Newman
+ PDF Chat Jordan rings with nonzero socle 1979 J. Marshall Osborn
Michel L. Racine
+ Algebra of Borcherds products 2021 Shouhei Ma
+ Discrete spectra of 𝐶*-algebras and orthogonally closed submodules in Hilbert 𝐶*-modules 2005 Masaharu Kusuda
+ PDF Chat Orthomodularity in infinite dimensions; a theorem of M. Solèr 1995 Samuel S. Holland
+ PDF Chat Interlacing polynomials 1987 Charles R. Johnson
+ Avoiding algebraic integers of bounded house in orbits of rational functions over cyclotomic closures 2018 Evan Chen
+ PDF Chat Prime rings with involution whose symmetric zero-divisors are nilpotent 1973 P. M. Cohn
+ PDF Chat Left annihilators characterized by GPIs 1995 Tsiu Kwen Lee
+ Sums of squares in real rings 2003 José F. Fernando
Jesús Ruíz
Claus Scheiderer
+ PDF Chat Matrices with circular symmetry on their unitary orbits and 𝐶-numerical ranges 1991 Chi-Kwong Li
Nam‐Kiu Tsing
+ On the nilpotent matrices over -lattice 2001 Kunlun Zhang
+ PDF Chat Prime ideals in enveloping rings 1987 D. S. Passman
+ PDF Chat Higher-dimensional analogues of Fuchsian subgroups of 𝑃𝑆𝐿(2,𝔬) 1993 L. Ya. Vulakh

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Conjugacy classes of $SU(h,\mathcal O_S)$ in $SL(2,\mathcal O_S)$ 1999 Donald G. James