Elliptical vortex solutions, integrable Ermakov structure, and Lax pair formulation of the compressible Euler equations

Type: Article

Publication Date: 2015-01-20

Citations: 5

DOI: https://doi.org/10.1103/physreve.91.013204

Locations

  • Physical Review E - View
  • PubMed - View

Similar Works

Action Title Year Authors
+ PDF Chat New conservation forms and Lie algebras of Ermakov-Pinney equation 2017 Özlem Orhan
Teoman Özer
+ PDF Chat A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction 2012 Hongli An
+ PDF Chat Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems 2004 A. K. Prykarpats’kyi
O. E. Hentosh
+ PDF Chat The generalized centrally extended Lie algebraic structures and related integrable heavenly type equations 2020 Oksana Ye. Hentosh
Alexander Balinsky
Anatolij K. Prykarpatski
+ GAUGE EQUIVALENCE BETWEEN THE TWO-COMPONENT GENERALIZATION OF THE (2+1)-DIMENSIONAL DAVEY-STEWARTSON I EQUATION AND 𝜞 - SPIN SYSTEM 2020 Nurzhan Serikbayev
Gulgassyl Nugmanova
Akbota Saparbekova
+ LINEAR WAVES THAT EXPRESS THE SIMPLEST POSSIBLE PERIODIC STRUCTURE OF THE COMPRESSIBLE EULER EQUATIONS 2009 Blake
Robin
Young
+ The dispersionless completely integrable heavenly type Hamiltonian flows and their differential-geometric structure 2019 OE Hentosh
Y. A. Prykarpatsky
Alexander Balinsky
A. K. Prykarpatski
+ Vortex solutions of Euler equation and its properties 2016 Н. Н. Фимин
В. М. Чечеткин
+ PDF Chat 10.1063/5.0074083.1 2022
+ Exploring the Lie symmetries, conservation laws, bifurcation analysis and dynamical waveform patterns of diverse exact solution to the Klein–Gordan equation 2024 Tariq Mahmood
Ghadah Alhawael
Sonia Akram
Mati ur Rahman
+ The Novel Lie-Algebraic Approach to Studying Integrable Heavenly Type Multi-Dimensional Dynamical Systems 2017 Denis Blackmore
Hentosh EO
Prykarpatski AK
+ Revisiting solving procedure for Ermakov-Pinney equation (with applications in the field of cosmology) 2010 Sergey V. Ershkov
Victor Christianto
Elbaz I. Abouelmagd
+ PDF Chat Integrable equations with Ermakov–Pinney nonlinearities and Chiellini damping 2015 Stefan C. Mancas
H. C. Rosu
+ Lie-algebraic structure of Lax–Sato integrable heavenly equations and the Lagrange–d’Alembert principle 2017 O. E. Hentosh
Yarema A. Prykarpatsky
Denis Blackmore
Anatolij K. Prykarpatski
+ Elliptic solutions of nonlinear integrable equations and related topics 1994 I. M. Krichever
+ Prototype and reduced nonlinear integrable lattice systems with the modulated pulson behavior 2020 Oleksiy O. Vakhnenko
+ PDF Chat Category of nonlinear evolution equations, algebraic structure, and r-matrix 2003 Zhijun Qiao
Cewen Cao
Walter Strampp
+ PDF Chat Group classification of the two-dimensional magnetogasdynamics equations in Lagrangian coordinates 2022 Sergey V. Meleshko
Evgenii Kaptsov
Sibusiso Moyo
G. M. Webb
+ PDF Chat Self-similar solutions with elliptic symmetry for the compressible Euler and Navier–Stokes equations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math> 2012 Manwai Yuen
+ Prototype and reduced nonlinear integrable lattice systems with the modulated pulson behavior 2020 Oleksiy O. Vakhnenko