Group 𝐢*-algebras of real rank zero or one

Type: Article

Publication Date: 1993-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9939-1993-1164146-1

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a locally compact group and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Superscript asterisk Baseline left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{C^{\ast }}(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> its group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Superscript asterisk"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{C^{\ast }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra, and denote by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R upper R left-parenthesis upper C Superscript asterisk Baseline left-parenthesis upper G right-parenthesis right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>RR</mml:mi> <mml:mo>⁑<!-- ⁑ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\operatorname {RR} ({C^{\ast }}(G))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the real rank of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Superscript asterisk Baseline left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{C^{\ast }}(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This note is a first step towards relating <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R upper R left-parenthesis upper C Superscript asterisk Baseline left-parenthesis upper G right-parenthesis right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>RR</mml:mi> <mml:mo>⁑<!-- ⁑ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\operatorname {RR} ({C^{\ast }}(G))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to the structure of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We identify the connected groups <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R upper R left-parenthesis upper C Superscript asterisk Baseline left-parenthesis upper G right-parenthesis right-parenthesis equals 0"> <mml:semantics> <mml:mrow> <mml:mi>RR</mml:mi> <mml:mo>⁑<!-- ⁑ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\operatorname {RR} ({C^{\ast }}(G)) = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as precisely the compact connected ones and characterize the nilpotent groups whose <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Superscript asterisk"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{C^{\ast }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras have real rank zero or one.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The regular group 𝐢*-algebra for real-rank one groups 1976 Robert P. Boyer
Robert P. Martin
+ Simple 𝐴𝐻-algebras of real rank zero 2003 Huaxin Lin
+ PDF Chat 𝑁𝐾₁ of finite groups 1987 Dennis R. Harmon
+ PDF Chat On 𝐢*-algebras associated with locally compact groups 1996 M. Bachir Bekka
Eberhard Kaniuth
Anthony Lau
G. Schlichting
+ Groups with 𝖠_{β„“}-commutator relations 2024 Egor Voronetsky
+ PDF Chat On the 𝐢*-algebra generated by the left regular representation of a locally compact group 1994 Erik Bédos
+ PDF Chat Group rings with solvable 𝑛-Engel unit groups 1976 James L. Fisher
M. M. Parmenter
Surinder K. Sehgal
+ PDF Chat Group algebras whose units satisfy a group identity 1997 Antonio Giambruno
Sudarshan K. Sehgal
A. Valenti
+ PDF Chat On the 𝐾-groups of certain 𝐢*-algebras used in 𝐸-theory 1994 Gabriel Nagy
+ PDF Chat A tauberian group algebra 1973 Peter R. Mueller-Roemer
+ PDF Chat Two remarks on the group algebra of a finite group 1971 K. L. Fields
+ PDF Chat The group of automorphisms of a class of finite 𝑝-groups 1982 Arye JuhΓ‘sz
+ PDF Chat Modular group algebras of 𝑁-groups 1988 William Ullery
+ PDF Chat Characterizations of algebras arising from locally compact groups 1992 Paul L. Patterson
+ PDF Chat On group 𝐢*-algebras of bounded representation dimension 1982 Iain Raeburn
+ PDF Chat A characterization of compact groups 1979 David L. Johnson
+ Group rings whose symmetric elements are Lie nilpotent 1999 Gregory T. Lee
+ PDF Chat On unital absorbing extensions of C*-algebras of stable rank one and real rank zero 2024 Qingnan An
Zhichao Liu
+ PDF Chat Identities of group algebras 1971 Paul Milnes
+ PDF Chat Group algebras whose units satisfy a group identity. II 1997 D. S. Passman