A class of extremal functions for the Fourier transform

Type: Article

Publication Date: 1981-01-01

Citations: 61

DOI: https://doi.org/10.1090/s0002-9947-1981-0607121-1

Abstract

We determine a class of real valued, integrable functions $f(x)$ and corresponding functions ${M_f}(x)$ such that $f(x) \leqslant {M_f}(x)$ for all $x$, the Fourier transform ${\hat M_f}(t)$ is zero when $\left | t \right | \geqslant 1$, and the value of ${\hat M_f}(0)$ is minimized. Several applications of these functions to number theory and analysis are given.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A Class of Extremal Functions for the Fourier Transform 1981 S. W. Graham
Jeffrey D. Vaaler
+ PDF Chat Some extremal functions in Fourier analysis 1985 Jeffrey D. Vaaler
+ PDF Chat Some Extremal Functions in Fourier Analysis, III 2009 Emanuel Carneiro
Jeffrey D. Vaaler
+ Fourier analysis: extremal problems 2013 Sándor Krenedits
+ Extrema of Real-Valued Functions 2020
+ Properties of the extremal functions 2010 Lars Ahlfors
+ PDF Chat Existence of extremals for a Fourier restriction inequality 2012 Francis Michael Christ
Shuanglin Shao
+ Existence of Extremals for a Fourier Restriction Inequality 2010 Michael Christ
Shuanglin Shao
+ Some Extremum Problems in the Theory of Fourier Series 1939 Otto Szász
+ PDF Chat Extremal problems for a class of symmetric functions 1972 Renate McLaughlin
+ An extremal problem in function theory 1977 Matts Essén
Daniel F. Shea
+ PDF Chat An Extremal Problem Involving Functions and Their Inverses. 1971 Felix Albrecht
Harvey Diamond
+ PDF Chat An extremal problem for functions with positive real part. 1964 M. S. Robertson
+ Extremal Problems for the Typically Real Functions 1966 William E. Kirwan
+ PDF Chat Functions on the real line with nonnegative Fourier transforms 1994 Takeshi Kawazoe
Yoshikazu Onoe
Kazuya Tachizawa
+ Some extremal properties of typically real functions 1981 В. В. Черников
+ Errata: An Extremal Problem for Functions with Positive Real Part 1974 R. S. Gupta
+ Extremum problems for functions with small support 1996 N. N. Andreev
Sergeĭ Konyagin
A. Yu. Popov
+ A Property of the Fourier Coefficients of an Integrable Function 1962 W. A. J. Luxemburg
+ A Property of the Fourier Coefficients of an Integrable Function 1962 W. A. J. Luxemburg