Some non-amenable groups

Type: Article

Publication Date: 2011-12-12

Citations: 3

DOI: https://doi.org/10.5565/publmat_56112_09

Abstract

We generalise a result of R. Thomas to establish the non-vanishing of the first 2 Betti number for a class of finitely generated groups.

Locations

  • Publicacions Matemàtiques - View
  • arXiv (Cornell University) - View - PDF
  • Dipòsit Digital de Documents de la UAB (Universitat Autònoma de Barcelona) - View - PDF

Similar Works

Action Title Year Authors
+ Some non-amenable groups 2010 Aditi Kar
Graham A. Niblo
+ Torsion homology growth and cheap rebuilding of inner-amenable groups 2024 Matthias Uschold
+ Torsion homology growth and cheap rebuilding of inner-amenable groups 2022 Matthias Uschold
+ On a problem of day on nonelementary amenable groups in the class of finitely defined groups 1996 Rostislav Grigorchuk
+ Amenable Groups 2023 Tullio Ceccherini‐Silberstein
Michel Coornaert
+ Certain Subgroups of the Betti-Mathieu Group 1900 L. E. Dickson
+ Finite groups with few non-linear irreducible characters 1974 J. Pelikán
+ A refinement of bounded cohomology 2022 Światosław R. Gal
Jarek Kędra
+ The Shannon-McMillan-Breiman theorem for a class of amenable groups 1983 Donald Ornstein
Benjamin Weiss
+ Monotileable Amenable Groups: An Application 2021 Amal Mohammed Ahmed Gaweash
Hayat Yousuf Ismail Bakur
Mariam Almahdi Mohammed Mu’lla
+ On vanishing criteria of $L^2$-Betti numbers of groups 2023 Pablo Sánchez-Peralta
+ PDF Chat Non-amenable groups with amenable action and some paradoxical decompositions in the plane 1998 Jan Mycielski
+ A short proof of the Approximation Conjecture for amenable groups 2008 Daniel Pape
+ $L^2$-Betti numbers and non-unitarizable groups without free subgroups 2008 D. Osin
+ Bounds in groups with trivial Frattini subgroup 2007 Zoltán Halasi
Károly Podoski
+ Amenable Locally Compact Groups 1984 Jean-Paul Pier
+ PDF Chat Groups with finitely many non-normal subgroups 1990 N.S. Hekster
H. W. Lenstra
+ PDF Chat Rank gradient and torsion groups 2010 D. Osin
+ Hereditarily just-infinite torsion groups with positive first $\ell^2$-Betti number 2024 Steffen Kionke
Eduard Schesler
+ Finite groups with few non-normal subgroups 2015 邱燕燕
卢家宽
庞琳娜