The Number of Huffman Codes, Compact Trees, and Sums of Unit Fractions

Type: Article

Publication Date: 2012-11-20

Citations: 17

DOI: https://doi.org/10.1109/tit.2012.2226560

Abstract

The number of “nonequivalent” compact Huffman codes of length <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</i> over an alphabet of size <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> has been studied frequently. Equivalently, the number of “nonequivalent” complete <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> -ary trees has been examined. We first survey the literature, unifying several independent approaches to the problem. Then, improving on earlier work, we prove a very precise asymptotic result on the counting function, consisting of two main terms and an error term.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • IEEE Transactions on Information Theory - View

Similar Works

Action Title Year Authors
+ PDF Chat Algorithmic counting of nonequivalent compact Huffman codes 2023 Christian Elsholtz
Clemens Heuberger
Daniel Krenn
+ Algorithmic counting of nonequivalent compact Huffman codes 2019 Christian Elsholtz
Clemens Heuberger
Daniel Krenn
+ Disjoint Chains with Equal Length: The Niederreiter-Rosenbloom-Tsfasman Metric 2018 Marcelo Firer
Marcelo Muniz S. Alves
Jerry Anderson Pinheiro
Luciano Panek
+ Bounds on the Number of Huffman and Binary-Ternary Trees 2013 Angeline Rao
Ying Liu
Yezhou Feng
Jian Shen
+ PDF Chat Prefix Codes: Equiprobable Words, Unequal Letter Costs 1996 Mordecai J. Golin
Neal E. Young
+ PDF Chat Efficient and compact representations of some non-canonical prefix-free codes 2022 Antonio Fariña
Travis Gagie
Szymon Grabowski
Giovanni Manzini
Gonzalo Navarro
Alberto Ordóñez
+ PDF Chat Efficient and Compact Representations of Some Non-canonical Prefix-Free Codes 2016 Antonio Fariña
Travis Gagie
Giovanni Manzini
Gonzalo Navarro
Alberto Ordóñez
+ PDF Chat A Tighter Upper Bound of the Expansion Factor for Universal Coding of Integers and Its Code Constructions 2022 Wei Yan
Sian-Jheng Lin
+ Exponential sums in coding theory, combinatorics, and number theory 1999 Carlos Julio Moreno
+ PDF Chat Book Review: Enumerative combinatorics, vol. I 1987 George E. Andrews
+ PDF Chat <i>Q</i>-Ary Non-Overlapping Codes: A Generating Function Approach 2022 Geyang Wang
Qi Wang
+ PDF Chat On the asymptotic density of the 𝑘-free integers 1966 H. Stärk
+ MEASURES OF CODES AND FINITE MAXIMAL CODES 1987 L Zhang
+ Partition-balanced families of codes and asymptotic enumeration in coding theory 2019 Eimear Byrne
Alberto Ravagnani
+ A Report on the General Enumerative SurveysâII 1949 Catherine Senf
+ Exponential Sums, Gauss Sums and Cyclic Codes 1997 Marko Moisio
+ PDF Chat On the Non-Existence of Perfect Codes in the Niederreiter-Rosenbloom-Tsfasman Metric 2023 Claudio Qureshi
Viviana Gubitosi
Aldo Portela
+ PDF Chat On Extremal Rates of Storage Over Graphs 2023 Zhou Li
Hua Sun
+ Density of Integer Sequences 1968 R. Kaufman
+ On the Asymptotic Density of the k-Free Integers 1966 H. M. Stark