Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions

Type: Article

Publication Date: 1993-01-01

Citations: 213

DOI: https://doi.org/10.1090/s0894-0347-1993-1179539-4

Abstract

We examine the Navier-Stokes equations (NS) on a thin <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="3"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding="application/x-tex">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional domain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega Subscript epsilon Baseline equals upper Q 2 times left-parenthesis 0 comma epsilon right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Q</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo>×<!-- × --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Omega _\varepsilon } = {Q_2} \times (0,\varepsilon )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Q</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{Q_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a suitable bounded domain in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {R}^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="epsilon"> <mml:semantics> <mml:mi>ε<!-- ε --></mml:mi> <mml:annotation encoding="application/x-tex">\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a small, positive, real parameter. We consider these equations with various homogeneous boundary conditions, especially spatially periodic boundary conditions. We show that there are <italic>large</italic> sets <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper R left-parenthesis epsilon right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">R</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {R}(\varepsilon )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript 1 Baseline left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^1}({\Omega _\varepsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper S left-parenthesis epsilon right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">S</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {S}(\varepsilon )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper W Superscript 1 comma normal infinity Baseline left-parenthesis left-parenthesis 0 comma normal infinity right-parenthesis comma upper L squared left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>W</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{W^{1,\infty }}((0,\infty ),{L^2}({\Omega _\varepsilon }))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U 0 element-of script upper R left-parenthesis epsilon right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>U</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">R</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{U_0} \in \mathcal {R}(\varepsilon )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F element-of script upper S left-parenthesis epsilon right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">S</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">F \in \mathcal {S}(\varepsilon )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then (NS) has a strong solution <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that remains in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript 1 Baseline left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^1}({\Omega _\varepsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t greater-than-or-equal-to 0"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">t \geq 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H squared left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^2}({\Omega _\varepsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">t &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that the set of strong solutions of (NS) has a local attractor <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper A Subscript epsilon"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">A</mml:mi> </mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathfrak {A}_\varepsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript 1 Baseline left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^1}({\Omega _\varepsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which is compact in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H squared left-parenthesis normal upper Omega Subscript epsilon Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^2}({\Omega _\varepsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Furthermore, this local attractor <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper A Subscript epsilon"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">A</mml:mi> </mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathfrak {A}_\varepsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> turns out to be the global attractor for all the weak solutions (in the sense of Leray) of (NS). We also show that, under reasonable assumptions, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper A Subscript epsilon"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">A</mml:mi> </mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathfrak {A}_\varepsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is upper semicontinuous at <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="epsilon equals 0"> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\varepsilon = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Journal of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Navier-Stokes Equations on Thin 3D Domains. I: Global Attractors and Global Regularity of Solutions 1993 Geneviève Raugel
George R. Sell
+ PDF Chat A one-point attractor theory for the Navier-Stokes equation on thin domains with no-slip boundary conditions 1999 Joel D. Avrin
+ Navier-Stokes equations in thin 3d domains: Global regularity of solutions 1990 Geneviève Raugel
George R. Sell
+ Global regularity of the Navier–Stokes equations on 3D periodic thin domain with large data 2020 Na Zhao
+ A note on weak solutions to the Navier–Stokes equations that are locally in 𝐿_{∞}(𝐿^{3,∞}) 2021 G. Serëgin
+ Navier-Stokes Equations in Thin 3D Domains III: Existence of a Global Attractor 1993 Geneviève Raugel
George R. Sell
+ O the Global Regularity Problem for the 3-DIMENSIONAL Navier-Stokes Equations on Thin Domains 1996 Vadim Gene Bondarevsky
+ On the embedding of the attractor generated by Navier-Stokes equations into finite dimensional spaces 2013 Mahdi Mohebbi
+ PDF Chat Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas 2003 Song Jiang
Ping Zhang
+ Remarks on the decay of Fourier coefficients to solutions of Navier-Stokes system 2021 Wen Deng
Marius Paicu
Ping Zhang
+ GLOBAL REGULARITY OF THE NAVIER-STOKES EQUATION ON THIN THREE-DIMENSIONAL DOMAINS WITH PERIODIC BOUNDARY CONDITIONS 1999 Stephen Montgomery-Smith
+ Global well-posedness and large-time behavior of classical solutions to the Euler-Navier-Stokes system in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math> 2024 Feimin Huang
Houzhi Tang
Guochun Wu
Weiyuan Zou
+ Existence and uniqueness of steady weak solutions to the Navier–Stokes equations in ℝ² 2018 Julien Guillod
Peter Wittwer
+ Local existence and Gevrey regularity of 3-D Navier–Stokes equations with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mo>ℓ</mml:mo></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math> initial data 2005 Animikh Biswas
+ Global regularity of 3D rotating Navier-Stokes equations for resonant domains 2000 Anatoli Babin
Alex Mahalov
B. Nicolaenko
+ PDF Chat Navier-Stokes equations in thin 3D domains with Navier boundary conditions 2007 Dragoş Iftimie
Geneviève Raugel
George R. Sell
+ The Three-Dimensional Navier-Stokes Equations: Classical Theory 2016 James C. Robinson
José L. Rodrigo
Witold Sadowski
+ 3D anisotropic Navier–Stokes equations in T2×R : stability and large-time behaviour 2023 Ruihong Ji
凌 柴田
Jiahong Wu
+ PDF Chat Global regularity for solutions of the Navier–Stokes equation sufficiently close to being eigenfunctions of the Laplacian 2021 Evan Miller
+ PDF Chat Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains 2021 Alessio Falocchi
Filippo Gazzola