Mutual absolute continuity of sets of measures

Type: Article

Publication Date: 1971-01-01

Citations: 10

DOI: https://doi.org/10.1090/s0002-9939-1971-0279275-x

Abstract

A theorem slightly stronger than the following is proved: If <italic>K</italic> is a convex set of (signed) measures that are absolutely continuous with respect to some fixed positive sigma-finite measure, then the subset consisting of those measures in <italic>K</italic> with respect to which all measures in <italic>K</italic> are absolutely continuous is the complement of a set of first category in any topology finer than the norm topology of measures. This implies, e.g., that any Banach-space-valued measure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding="application/x-tex">\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is absolutely continuous with respect to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue mathematical left-angle mu left-parenthesis dot right-parenthesis comma x prime mathematical right-angle EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mo>|</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo fence="false" stretchy="false">⟨<!-- ⟨ --></mml:mo> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo fence="false" stretchy="false">⟩<!-- ⟩ --></mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\left | {\langle \mu ( \cdot ),x’\rangle } \right |</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a norm-dense <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G Subscript delta"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>δ<!-- δ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{G_\delta }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of elements <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x prime"> <mml:semantics> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">x’</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the dual of the Banach space.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Mutual Absolute Continuity of Sets of Measures 1971 Bertram Walsh
+ Absolute Continuity of Measures 1974 A. V. Skorohod
+ Ons-sets and mutual absolute continuity of measures on homogeneous spaces 1997 Tord Sjödin
+ PDF Chat Measures satisfying a refined doubling condition and absolute continuity 1995 Alf Jonsson
+ Absolute Continuity of a Measure 2014
+ Absolute Continuity 2005 C. Richard Baker
+ PDF Chat Weak Precompactness in the Space of Vector-Valued Measures of Bounded Variation 2015 Ioana Ghenciu
+ PDF Chat Absolute continuity of vector measures 1973 Kazimierz Musiał
+ On the absolutely continuous component of a weak limit of measures on ℝ supported on discrete sets 2016 Alexander Gordon
+ Absolute Continuity and Contiguity of Measures 2019 Sheng-wu He
Jia-gang Wang
Jia-an Yan
+ PDF Chat On the Absolute Continuity of Measures 1970 T. E. Duncan
+ PDF Chat Uniform absolute continuity in spaces of set functions 1975 James D. Stein
+ PDF Chat Joint continuity of measurable biadditive mappings 1988 Jens Peter Christensen
Pàl Fischer
+ PDF Chat Families of sets of positive measure 1992 Grzegorz Plebanek
+ On the Absolute Continuity of the Blackwell Measure 2015 Balázs Bárány
István Kolossváry
+ PDF Chat Liapounoff’s theorem for nonatomic, finitely-additive, bounded, finite-dimensional, vector-valued measures 1981 Thomas E. Armstrong
Karel Prikry
+ PDF Chat A characterization of mutual absolute continuity of probability measures on a filtered space 2024 Michael Mayer
+ Preface 2008 Togo Nishiura
+ PDF Chat Absolute Continuity for Group-Valued Measures 1973 Tim Traynor
+ Absolute Continuity (of Measures on Infinite‐Dimensional Linear Spaces) 2004 C. Richard Baker

Works Cited by This (1)

Action Title Year Authors
+ Integration Over Vector-Valued Measures 1965 G. G. Gould