Convolution identities for tensors

Type: Article

Publication Date: 1984-11-01

Citations: 1

DOI: https://doi.org/10.1007/bf01410755

Abstract

The concept of a convolution identity for tensors is introduced and it is proved that any convolution identity for tensors on a finite-dimensional space follows from a convolution identity equivalent to the classical Cayley-Hamilton identity.

Locations

  • Journal of Soviet Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Tensor Notation 2012 N. Phan‐Thien
+ Vector, Matrix and Tensor Algebra 1960 Boris Garfinkel
John Fleck
+ Mathematical Preliminaries 2013 M. Reza Eslami
Richard B. Hetnarski
Józef Ignaczak
Naotake Noda
Naobumi Sumi
Yoshinobu TANIGAWA
+ Convolution in symmetric spaces 1992 E. A. Pavlov
+ Bilinear Maps and Tensor Products in Operator Theory 2023 Carlos S. Kubrusly
+ On Neubergeŕs identity for symmetric tensors 1975 Dragomir Ž. Djoković
+ Appendix B Matrix algebra and tensors 2005
+ Symmetric tensors and the trace operator 1970 Jerzy Plebański
+ Preface to the special issue on tensors and multilinear algebra 2012 Shmuel Friedland
Tamara G. Kolda
Lek‐Heng Lim
Е. Е. Тыртышников
+ An operator calculus of tensor commuting operators on spaces of ultrasmooth vectors 1993 O. V. Lopushanskii
+ Tensor product in symmetric function spaces 1997 С. В. Асташкин
+ Tensors and the Cufford Algebra 2020 Alphonse Charlier
Alain Bérard
Marie-France Charlier
Danièle Fristot
+ CALCULUS OF TENSORS 1994 D. S. Chandrasekharaiah
Lokenath Debnath
+ A Brief Introduction to Vectors, Tensors and Differential Operators 2008
+ Vectors and Tensors in Cartesian Coordinates 2015 Joseph M. Powers
Mihir Sen
+ PDF Chat Poisson and Fourier Transforms for Tensor Products 2015 V. F. Molchanov
+ Tensor-Product Summation-by-Parts Operators 2017 David C. Del Rey Fernández
Pieter D. Boom
Mehrdad Shademan
David W. Zingg
+ Algebra of Tensors 1999 Sadri Hassani
+ Kronecker products and the vec operator 1991 Peter Berck
Knut Sydsæter
+ Kronecker products and the vec operator 1993 Peter Berck
Knut Sydsæter