Littlewood-Paley and multiplier theorems on weighted $L\sp{p}$\ spaces

Type: Article

Publication Date: 1980-01-01

Citations: 156

DOI: https://doi.org/10.1090/s0002-9947-1980-0561835-x

Abstract

The Littlewood-Paley operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="gamma left-parenthesis f right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\gamma (f)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for functions <italic>f</italic> defined on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext mathvariant="bold">R</mml:mtext> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\textbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is shown to be a bounded operator on certain weighted <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> spaces. The weights satisfy an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> condition over the class of all <italic>n</italic>-dimensional rectangles with sides parallel to the coordinate axes. The necessity of this class of weights demonstrates the 1-dimensional nature of the operator. Results for multipliers are derived, including weighted versions of the Marcinkiewicz Multiplier Theorem and Hörmander’s Multiplier Theorem.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Norm inequalities for the Littlewood-Paley function 𝑔*_{𝜆} 1974 Benjamin Muckenhoupt
Richard L. Wheeden
+ PDF Chat Mean-boundedness and Littlewood-Paley for separation-preserving operators 1997 Earl Berkson
T. A. Gillespie
+ PDF Chat A remark on the constants of the Littlewood-Paley inequality 1992 S. K. Pichorides
+ PDF Chat On the Littlewood-Paley theory for mixed norm spaces 1979 John Gosselin
+ PDF Chat Iterated Littlewood-Paley functions and a multiplier theorem 1974 W. R. Madych
+ Estimates for Littlewood–Paley operators in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">BMO</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>n</mml:mi></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> 2008 Yan Meng
Dachun Yang
+ PDF Chat Generalizations of inequalities of littlewood and paley 1991 Zengjian Lou
+ PDF Chat On the Littlewood-Paley-Stein 𝑔-function 1995 Stefano Meda
+ PDF Chat The multiplier operators on the weighted product spaces 1996 Lung-Kee Chen
Dashan Fan
+ Littlewood-Paley and Multiplier Theorems on Weighted L p Spaces 1980 Douglas S. Kurtz
+ PDF Chat $L^p$-multipliers: a new proof of an old theorem 1988 Tomas Schonbek
+ Littlewood–Paley operators associated with the Dunkl operator on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="double-struck">R</mml:mi></mml:math> 2004 Fethi Soltani
+ Weighted Littlewood–Paley inequality for arbitrary rectangles in ℝ² 2021 Viacheslav Borovitskiy
+ PDF Chat On two theorems of Paley 1974 N. M. Rivière
Yoram Sagher
+ PDF Chat On $H\sp p(\bold R\sp n)$-multipliers of mixed-norm type 1994 C. W. Onneweer
T. S. Quek
+ On the boundedness of multilinear Littlewood–Paley<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msubsup><mml:mrow><mml:mi>g</mml:mi></mml:mrow><mml:mrow><mml:mi>λ</mml:mi></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msubsup></mml:math>function 2013 Shaoguang Shi
Qingying Xue
Kôzô Yabuta
+ A short proof of an inequality of Littlewood and Paley 2006 Miroslav Pavlović
+ Littlewood–Paley and Spectral Multipliers on Weighted L p Spaces 2012 Ruming Gong
Lixin Yan
+ PDF Chat Weak compactness in $L\sp 1(\mu,X)$ 1991 A. Ülger
+ PDF Chat A new proof of an inequality of Littlewood and Paley 1988 Daniel H. Luecking