Vanishing of modular forms at infinity

Type: Article

Publication Date: 2008-11-21

Citations: 7

DOI: https://doi.org/10.1090/s0002-9939-08-09768-2

Locations

  • Proceedings of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ Nonvanishing of Fourier coefficients of modular forms 2002 Emre Alkan
+ A generalization of a theorem of Rankin and Swinnerton-Dyer on zeros of modular forms 2004 Jayce R. Getz
+ PDF Chat Modular forms which behave like theta series 1997 Kalyan Chakraborty
A. K. Lal
B. Ramakrishnan
+ PDF Chat L-series with nonzero central critical value 1998 Kevin James
+ Limits of traces of singular moduli 2019 Dohoon Choi
Subong Lim
+ Zeros of the Eisenstein series 𝐸₂ 2010 Abdelkrim El Basraoui
Abdellah Sebbar
+ A continued fraction of order twelve as a modular function 2017 Yoonjin Lee
Yoon Kyung Park
+ Exponential sums on 𝐀ⁿ, II 2003 Alan Adolphson
Steven Sperber
+ PDF Chat 𝑅=𝑇 theorems for weight one modular forms 2023 Tobias Berger
Krzysztof Klosin
+ Multiplicities of representations in spaces of modular forms 2005 Bin Yong Hsie
+ Drinfeld Modular Forms of Arbitrary Rank 2024 Dirk Basson
Florian Breuer
Richard Pink
+ PDF Chat Strong multiplicity theorems for 𝐺𝐿(𝑛) 1987 George T. Gilbert
+ Sums of Fourier coefficients of cusp forms of level 𝐷 twisted by exponential functions over arithmetic progressions 2017 Huan Liu
Meng Zhang
+ Non-vanishing of derivatives of 𝐺𝐿(3)×𝐺𝐿(2) 𝐿-functions 2011 Qingfeng Sun
+ Limit multiplicities of cusp forms 1989 Gordan Savin
+ PDF Chat Slopes of modular forms and reducible Galois representations, an oversight in the ghost conjecture 2022 John Bergdall
Robert Pollack
+ Non-existence of Siegel zeros for cuspidal functorial products on 𝐺𝐿(2)×𝐺𝐿(3) 2022 Wenzhi Luo
+ The special values of the standard 𝐿-functions for 𝐺𝑆𝑝_{2𝑛}×𝐺𝐿₁ 2021 Shuji Horinaga
Ameya Pitale
Abhishek Saha
Ralf Schmidt
+ Effective sup-norm bounds on average for cusp forms of even weight 2019 J. Friedman
Jay Jorgenson
J. Kramer
+ PDF Chat Spectral multiplicity for 𝐺𝑙_{𝑛}(𝑅) 1992 J. M. Huntley