The Wiener lemma and cocycles

Type: Article

Publication Date: 1988-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9939-1988-0964876-6

Abstract

We give a sufficient and necessary condition for a function with its values in the unit circle to be a multiplicative coboundary. This theorem generalizes the following result of Veech [<bold>1</bold>]. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T colon bold upper T right-arrow bold upper T"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">T:{\mathbf {T}} \to {\mathbf {T}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a rotation of the unit circle <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper T"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {T}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by an irrational angle <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="theta"> <mml:semantics> <mml:mi>θ<!-- θ --></mml:mi> <mml:annotation encoding="application/x-tex">\theta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F colon bold upper T right-arrow bold upper T"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">F:{\mathbf {T}} \to {\mathbf {T}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a measurable function. Then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a multiplicative coboundary iff <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="integral Underscript bold upper T Endscripts upper F left-parenthesis x right-parenthesis upper F left-parenthesis upper T x right-parenthesis midline-horizontal-ellipsis upper F left-parenthesis upper T Superscript n minus 1 Baseline x right-parenthesis d mu left-parenthesis x right-parenthesis right-arrow 1 comma as double-vertical-bar n theta double-vertical-bar right-arrow 0 comma"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>F</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>T</mml:mi> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>T</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>d</mml:mi> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mspace width="1em" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>as </mml:mtext> </mml:mrow> <mml:mrow> <mml:mo symmetric="true">‖</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mi>θ<!-- θ --></mml:mi> </mml:mrow> <mml:mo symmetric="true">‖</mml:mo> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\int _{\mathbf {T}} {F(x)F(Tx) \cdots F({T^{n - 1}}x)d\mu (x) \to 1,\quad {\text {as }}\left \| {n\theta } \right \| \to 0,}</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-vertical-bar n theta double-vertical-bar"> <mml:semantics> <mml:mrow> <mml:mo symmetric="true">‖</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mi>θ<!-- θ --></mml:mi> </mml:mrow> <mml:mo symmetric="true">‖</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\left \| {n\theta } \right \|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the distance of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n theta"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mi>θ<!-- θ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">n\theta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from integers and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding="application/x-tex">\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Haar measure.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Wiener Lemma and Cocycles 1988 Marek Rychlik
+ Quasi-factors and the circle operator 2014 David B. Ellis
Robert Ellis
+ Cyclic Cocycles and Basic Operators 2020 Daniel Quillen
Gordon Blower
+ PDF Chat The transfer and symplectic cobordism 1997 Малхаз Бакурадзе
+ PDF Chat Unbounded gaps for cocycles and invariant measures for their Mackey actions 1998 Mariusz Lemańczyk
S. Sinel’shchikov
+ A coincidence theorem for commuting involutions 2011 Pedro L. Q. Pergher
+ PDF Chat A cocycle theorem with an application to Rosenthal sets 1996 Peter J. Schwartz
+ Cocycles and continuity 2012 Howard Becker
+ PDF Chat A sharp estimate for 𝐴^{𝑝}_{𝛼} functions in 𝐶ⁿ 1993 Dragan Vukotić
+ The generalised Berger–Wang formula and the spectral radius of linear cocycles 2011 Ian D. Morris
+ PDF Chat A note on cocycles of unitary representations 1976 William Parry
K. Schmidt
+ Products of Cocycles and Extensions of Mappings 1947 Norman Steenrod
+ PDF Chat On extension of cocycles to normalizer elements, outer conjugacy, and related problems 1996 Alexandre I. Danilenko
V. Ya. Golodets
+ Lifting mixing properties by Rokhlin cocycles 2011 Mariusz Lemańczyk
François Parreau
+ Another proof for the continuity of the Lipsman mapping 2020 Anis Messaoud
Aymen Rahali
+ A cocycle equation for shifts 1992 William Parry
+ PDF Chat 𝑃𝐿 involutions of 𝑆¹×𝑆¹×𝑆¹ 1975 Kyung Whan Kwun
Jeffrey L. Tollefson
+ On linear cocycles over irrational rotations with secondary collisions 2021 Alexey V. Ivanov
+ PDF Chat A class of real cocycles over an irrational rotation for which Rokhlin cocycle extensions have Lebesgue component in the spectrum 2004 Magdalena Wysokińska
+ Postnikov pieces and 𝐵ℤ/𝕡-homotopy theory 2006 Natàlia Castellana
Juan A. Crespo
Jérôme Scherer