Pro-<i>p</i> groups of positive deficiency

Type: Article

Publication Date: 2008-10-03

Citations: 7

DOI: https://doi.org/10.1112/blms/bdn089

Abstract

Let Γ be a finitely presentable pro-p group with a nontrivial, finitely generated closed normal subgroup N of infinite index. Then def (Γ) ⩽ 1, and if def (Γ) = 1 then Γ is a pro-p duality group of dimension 2, N is a free pro-p group and Γ/N is virtually free. In particular, if the centre of Γ is nontrivial and def (Γ) ⩾ 1, then def (Γ) = 1, cd G ⩽ 2 and Γ is virtually a direct product F × ℤp, with F a finitely generated free pro-p group.

Locations

  • Bulletin of the London Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Higher dimensional algebraic fiberings for pro-<i>p</i> groups 2023 Dessislava H. Kochloukova
+ Pro-<i>p</i> groups of finite rank 1999 J. D. Dixon
M. P. F. Du Sautoy
A. Mann
Dan Segal
+ PDF Chat Virtually free pro-<i>p</i> groups whose torsion elements have finite centralizer 2008 Wolfgang Herfort
Pavel Zalesskii
+ PDF Chat A NOTE ON POLYCYLIC RESIDUALLY FINITE-<i>p</i> GROUPS 2009 Giovanni Cutolo
Howard L. Smith
+ Pro-<i>p</i> groups of finite coclass 1999 J. D. Dixon
M. P. F. Du Sautoy
A. Mann
Dan Segal
+ Higher dimensional algebraic fiberings for pro-$p$ groups 2022 Dessislava H. Kochloukova
+ Closed normal subgroups of free pro-<i>S</i>-groups of finite rank 2011 Andrea Lucchini
+ Finitely presented pro-<i>p</i> groups 1998 John Wilson
+ Normal Subgroups of Profinite Groups of Non-negative Deficiency 2008 Fritz Grunewald
Andrei Jaikin‐Zapirain
Aline G. S. Pinto
Pavel Zalesski
+ Normal Subgroups of Profinite Groups of Non-negative Deficiency 2008 Fritz Grunewald
Andrei Jaikin‐Zapirain
Aline G. S. Pinto
Pavel Zalesski
+ PRO-<i>p</i>GROUPS OF FINITE WIDTH 2001 A. R. Camina
Rachel D. Camina
+ Pro-<i>p</i> groups of finite coclass 1992 Aner Shalev
Efim Zelmanov
+ PDF Chat Cohomological properties of maximal pro-<i>p</i> Galois groups that are preserved under profinite completion 2024 Tamar Bar‐On
+ PDF Chat Normal subgroups of profinite groups of non-negative deficiency 2013 Fritz Grunewald
Andrei Jaikin‐Zapirain
Aline G. S. Pinto
Pavel Zalesskii
+ Finite<i>p</i>-Groups All of Whose Proper Quotient Groups are Abelian or Inner-Abelian 2010 Qinhai Zhang
Lili Li
Mingyao Xu
+ Pro-<i>p</i> -Groups of Finite Coclass 1994 C. R. Leedham-Green
+ PDF Chat Virtually free pro-<i>p</i> products 2016 Pavel Zalesskii
+ On<i>c</i>*-Normal Subgroups of<i>p</i>-Power Order in a Finite Group 2013 Liying Yang
Huaquan Wei
LU Ruo-fei
+ PDF Chat Bloch–Kato pro-<i>p</i> groups and locally powerful groups 2012 Claudio Quadrelli
+ ANALYTIC PRO-<i>p</i>-GROUPS OF RANK 3 AND CLOSED PRO-<i>p</i>-GROUPS OF TYPE (3,4) 1986 I. V. Andozhskii
V. M. Tsvetkov