Admissibility Results for Generalized Bayes Estimators of Coordinates of a Location Vector

Type: Article

Publication Date: 1976-03-01

Citations: 23

DOI: https://doi.org/10.1214/aos/1176343410

Abstract

Let $X$ be an $n$-dimensional random vector with density $f(x - \theta)$. It is desired to estimate $\theta_1$, under a strictly convex loss $L(\delta - \theta_1)$. If $F$ is a generalized Bayes prior density, the admissibility of the corresponding generalized Bayes estimator, $\delta_F$, is considered. An asymptotic approximation to $\delta_F$ is found. Using this approximation, it is shown that if (i) $f$ has enough moments, (ii) $L$ and $F$ are smooth enough, and (iii) $F(\theta) \leqq K(|\theta_1| + \sum^n_{i=2} \theta_i^2)^{(3-n)/2}$, then $\delta_F$ is admissible for estimating $\theta_1$. For example, assume that $F(\theta) \equiv 1$ and that $L$ is squared error loss. Under appropriate conditions it can be shown that $\delta_F(x) = x_1$, and that $\delta_F$ is the best invariant estimator. If, in addition, $f$ has 7 absolute moments and $n \leqq 3$, it can be concluded that $\delta_F$ is admissible.

Locations

  • The Annals of Statistics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Inadmissibility Results for Generalized Bayes Estimators of Coordinates of a Location Vector 1976 James O. Berger
+ PDF Chat Inadmissibility Results for the Best Invariant Estimator of Two Coordinates of a Location Vector 1976 James O. Berger
+ Generalized Bayes minimax estimators of location vectors for spherically symmetric distributions with residual vector 2013 Dominique Fourdrinier
Othmane Kortbi
William E. Strawderman
+ PDF Chat General Admissibility and Inadmissibility Results for Estimation in a Control Problem 1982 James O. Berger
L. Mark Berliner
Asad Zaman
+ Mean-variance constrained priors have finite maximum Bayes risk in the normal location model 2023 Jiafeng Chen
+ PDF Chat Admissible Bayes equivariant estimation of location vectors for spherically symmetric distributions with unknown scale 2020 Yuzo Maruyama
William E. Strawderman
+ PDF Chat Asymptotic Properties of Estimators of a Location Parameter 1974 Charles J. Stone
+ Admissible Bayes equivariant estimation of location vectors for spherically symmetric distributions with unknown scale 2017 Yuzo Maruyama
William E. Strawderman
+ PDF Chat Admissibility of Quantile Estimates of a Single Location Parameter 1964 Martin Fox
Herman Rubin
+ PDF Chat Minimaxity in predictive density estimation with parametric constraints 2013 Tatsuya Kubokawa
Éric Marchand
William E. Strawderman
Jean‐Philippe Turcotte
+ PDF Chat Simultaneous estimation of location parameters for sign-invariant distributions 1997 Jian‐Lun Xu
+ PDF Chat Deriving Posterior Distributions for a Location Parameter: A Decision Theoretic Approach 1984 Constantine Gatsonis
+ Asymptotic Minimax Theory for Estimating a Location Parameter 1981 Peter J. Huber
+ PDF Chat Upper Bounds on Asymptotic Variances of $M$-Estimators of Location 1977 John R. Collins
+ Near ignorance classes of log-concave priors for the location model 1992 Bruno Sansó
Luis R. Pericchi
+ PDF Chat Minimax estimation of linear combinations of restricted location parameters 2012 Tatsuya Kubokawa
+ Improving on Minimum Risk Equivariant and Linear Minimax Estimators of Bounded Multivariate Location Parameters 2010 Éric Marchand
Amir T. Payandeh Najafabadi
+ ASYMPTOTIC THEORY FOR ESTIMATION OF LOCATION IN NON-REGULAR CASES, I: ORDER OF CONVERGENCE OF CONSISTENT ESTIMATORS 1975 Masafumi Akahira
+ Minimaxity in Predictive Density Estimation with Parametric Constraints 2012 Tatsuya Kubokawa
Éric Marchand
William E. Strawderman
Jean‐Philippe Turcotte
+ Minimaxity in Predictive Density Estimation with Parametric Constraints 2012 Tatsuya Kubokawa
Éric Marchand
William E. Strawderman
Jean‐Philippe Turcotte