Quantum variance for Hecke eigenforms☆

Type: Article

Publication Date: 2004-09-01

Citations: 54

DOI: https://doi.org/10.1016/j.ansens.2004.08.001

Abstract

We calculate the quantum variance for the modular surface. This variance, introduced by S. Zelditch, describes the fluctuations of a quantum observable. The resulting quadratic form is then compared with the classical variance. The expectation that these two coincide only becomes true after inserting certain subtle arithmetic factors, specifically the central values of corresponding L-functions. It is the off-diagonal terms in the analysis that are responsible for the rich arithmetic structure arising from the diagonalization of the quantum variance. Nous calculons la variance quantique pour la surface modulaire. Cette variance, introduite par S. Zelditch, décrit les fluctuations d'une observable quantique. La forme quadratique ainsi obtenue est comparée avec la variance classique. On s'attend à ce que toutes les deux coïncident, mais cela ne se passe qu'après inclusion de certains facteurs arithmétiques subtils, précisément les valeurs centrales des fonctions L appropriées. Les termes non diagonaux apparaissant dans l'analyse de la diagonalisation de la variance quantique sont responsables de la riche structure arithmétique.

Locations

  • Annales Scientifiques de l École Normale Supérieure - View
  • French digital mathematics library (Numdam) - View - PDF
  • Annales Scientifiques de l École Normale Supérieure - View
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ The Quantum variance of the Modular Surface 2019 Peter Sarnak
Peng Zhao
+ Quantum variance for Eisenstein Series 2018 Bingrong Huang
+ PDF Quantum Variance of Maass-Hecke Cusp Forms 2009 Peng Zhao
+ PDF Chat Quantum Variance for Eisenstein Series 2019 Bingrong Huang
+ Quantum variance on quaternion algebras, I 2016 Paul D. Nelson
+ The Quantum Variance of the Modular Surface 2013 Peter Sarnak
Peng Zhao
Appendix by Michael Woodbury
+ Quantum variance for holomorphic Hecke cusp forms on the vertical geodesic 2021 Peter Zenz
+ Quantum variance for holomorphic Hecke cusp forms on the vertical geodesic 2021 Peter Zenz
+ Quantum variance for dihedral Maass forms 2020 Bingrong Huang
Stephen Lester
+ The variance of arithmetic measures associated to closed geodesics on the modular surface 2008 Wenzhi Luo
Zeév Rudnick
Peter Sarnak
+ PDF Chat The variance of arithmetic measures associated to closed geodesics on the modular surface 2009 Wenzhi Luo
Zeév Rudnick
Peter Sarnak
+ On a variance of Hecke eigenvalues in arithmetic progressions 2012 Yuk-Kam Lau
Lilu Zhao
+ The Siegel variance formula for quadratic forms 2019 Naser T. Sardari
+ The Siegel variance formula for quadratic forms 2019 Naser T. Sardari
+ PDF Mean square of quadratic Hecke character sum 2023 Zi ei Hong
Zhiy ng Zheng
+ PDF Chat On the average size of the eigenvalues of the Hecke operators 2024 William Cason
Akash Jim
Charlie Medlock
Erick Ross
Hui Xue
+ Average values of quadratic Hecke character sums 2019 Peng Gao
Liangyi Zhao
+ Quadratic Forms and Hecke Operators 1987 Anatolij N. Andrianov
+ Quadratic forms and Hecke operators 1988 Gian‐Carlo Rota
+ PDF Book Review: Quadratic forms and Hecke operators 1988 Martin Eichler