On the Bogolyubov–Ruzsa lemma

Type: Article

Publication Date: 2012-10-15

Citations: 114

DOI: https://doi.org/10.2140/apde.2012.5.627

Abstract

Our main result is that if A is a finite subset of an abelian group with |A+A| < K|A|, then 2A-2A contains an O(log^{O(1)} K)-dimensional coset progression M of size at least exp(-O(log^{O(1)} K))|A|.

Locations

  • Analysis & PDE - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ New bounds in the Bogolyubov-Ruzsa lemma 2023 Tomasz Kosciuszko
Tomasz Schoen
+ On a two-dimensional analog of Szemeredi's Theorem in Abelian groups 2007 Ilya D. Shkredov
+ PDF Chat A bilinear Bogolyubov-Ruzsa lemma with poly-logarithmic bounds 2019 Kaave Hosseini
Shachar Lovett
+ PDF Chat COMPRESSIONS, CONVEX GEOMETRY AND THE FREIMAN–BILU THEOREM 2006 B. Green
Terence Tao
+ On a conjecture of Károly Bezdek and János Pach 2006 Márton Naszódi
+ An Erdős–Ko–Rado theorem for unions of length 2 paths 2020 Carl Feghali
Glenn Hurlbert
Vikram Kamat
+ On a long-standing conjecture by Pólya–Szegö and related topics 2005 Graziano Crasta
Ilaria Fragalà
Filippo Gazzola
+ An Erdős–Ko–Rado-type theorem in Coxeter groups 2007 Jun Wang
Sophia J. Zhang
+ PDF Chat On growth and torsion of groups 2009 Laurent Bartholdi
Floriane Pochon
+ On a Generalization of Szemeredi's Theorem 2005 Ilya D. Shkredov
+ On product sets of arithmetic progressions 2022 Max Wenqiang Xu
Yunkun Zhou
+ PDF Chat Bounds on arithmetic projections, and applications to the Kakeya conjecture 1999 Nets Hawk Katz
Terence Tao
+ Compressions, convex geometry and the Freiman-Bilu theorem 2005 Ben Green
Terence Tao
+ Erdős-Ko-Rado theorem for bounded multisets 2024 Jiaqi Liao
Zequn Lv
Mengyu Cao
Mei Lu
+ On the A. M. Bikchentaev conjecture 2012 Fedor Sukochev
+ A step beyond Freiman's theorem for set addition modulo a prime. 2018 Pablo Candela
Oriol Serra
Christoph Spiegel
+ A step beyond Freiman's theorem for set addition modulo a prime 2018 Pablo Candela
Oriol Serra
Christoph Spiegel
+ On Erdős-Rado numbers 1995 Hanno Lefmann
Vojtěch Rödl
+ A general 2-part Erdős-Ko-Rado theorem 2017 Gyula O. H. Katona
+ PDF Chat On the Erdős–Ko–Rado property for finite groups 2014 Mohammad Bardestani
Keivan Mallahi-Karai