Entanglement of Three-Qubit Greenberger-Horne-Zeilinger–Symmetric States

Type: Article

Publication Date: 2012-01-13

Citations: 109

DOI: https://doi.org/10.1103/physrevlett.108.020502

Abstract

The first characterization of mixed-state entanglement was achieved for two-qubit states in Werner's seminal work [Phys. Rev. A 40, 4277 (1989)]. A physically important extension of this result concerns mixtures of a pure entangled state (such as the Greenberger-Horne-Zeilinger [GHZ] state) and the completely unpolarized state. These mixed states serve as benchmark for the robustness of entanglement. They share the same symmetries as the GHZ state. We call such states GHZ-symmetric. Despite significant progress their multipartite entanglement properties have remained an open problem. Here we give a complete description of the entanglement in the family of three-qubit GHZ-symmetric states and, in particular, of the three-qubit generalized Werner states. Our method relies on the appropriate parameterization of the states and on the invariance of entanglement properties under general local operations. An immediate application of our results is the definition of a symmetrization witness for the entanglement class of arbitrary three-qubit states.

Locations

  • Physical Review Letters - View
  • arXiv (Cornell University) - View - PDF
  • Publikationsserver der Universität Regensburg (Uni Regensburg) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Optimal witnesses for three-qubit entanglement from Greenberger-Horne-Zeilinger symmetry 2012 Christopher Eltschka
Jens Siewert
+ Optimal witnesses for three-qubit entanglement from Greenberger-Horne-Zeilinger symmetry 2012 Christopher Eltschka
Jens Siewert
+ Twin GHZ-states behave differently 2015 Gonzalo Carvacho
Francesco Graffitti
Vincenzo D’Ambrosio
Beatrix C. Hiesmayr
Fabio Sciarrino
+ Twin GHZ-states behave differently 2015 Gonzalo Carvacho
Francesco Graffitti
Vincenzo D’Ambrosio
Beatrix C. Hiesmayr
Fabio Sciarrino
+ Entanglement Classification of extended Greenberger-Horne-Zeilinger-Symmetric States 2013 Eylee Jung
DaeKil Park
+ PDF Chat Nonlocality of three-qubit Greenberger-Horne-Zeilinger–symmetric states 2016 Biswajit Paul
Kaushiki Mukherjee
Debasis Sarkar
+ Entanglement and volume monogamy features of permutation symmetric N-qubit pure states with N-distinct spinors: GHZ and WWbar states 2023 Sudha
Usha Devi A R
Akshata Shenoy H.
H S Karthik
Humera Talath
Bada Palaiah Govindaraja
A. K. Rajagopal
+ Maximally entangled three-qubit states via geometric measure of entanglement 2009 Sayatnova Tamaryan
Tzu-Chieh Wei
DaeKil Park
+ PDF Chat Entanglement classification and \emph{non-k}-separability certification via Greenberger-Horne-Zeilinger-class fidelity 2024 Marcin Płodzień
Jan Chwedeńczuk
Maciej Lewenstein
Grzegorz Rajchel-Mieldzioć
+ PDF Chat Geometric measure of entanglement and applications to bipartite and multipartite quantum states 2003 Tzu-Chieh Wei
Paul M. Goldbart
+ PDF Chat Symmetric mixed states of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>n</mml:mi></mml:math>qubits: Local unitary stabilizers and entanglement classes 2011 David W. Lyons
Scott N. Walck
+ PDF Chat Operational Multipartite Entanglement Measures 2015 Katharina Schwaiger
David Sauerwein
Martí Cuquet
Julio I. de Vicente
Barbara Kraus
+ PDF Chat Multiqubit symmetric states with maximally mixed one-qubit reductions 2014 D. Baguette
Thierry Bastin
John Martin
+ PDF Chat Entanglement classification of restricted Greenberger-Horne-Zeilinger–symmetric states in a four-qubit system 2014 DaeKil Park
+ PDF Chat Separability criteria for mixed three-qubit states 2011 Szilárd Szalay
+ PDF Chat Minimax optimization of entanglement witness operator for the quantification of three-qubit mixed-state entanglement 2012 Sungguen Ryu
Seung‐Sup B. Lee
H.-S. Sim
+ PDF Chat The maximally entangled set of 4-qubit states 2016 Cornelia Spee
Julio I. de Vicente
Barbara Kraus
+ PDF Chat Hierarchies of geometric entanglement 2008 Massimo Blasone
Fabio Dell’Anno
Silvio De Siena
Fabrizio Illuminati
+ Entanglement and genuine entanglement of three qubit GHZ diagonal states 2012 Xiaoyu Chen
Li-zhen Jiang
Ping Yu
Mingzhen Tian
+ PDF Chat Computation of the geometric measure of entanglement for pure multiqubit states 2010 Lin Chen
Aimin Xu
Huangjun Zhu

Works That Cite This (79)

Action Title Year Authors
+ PDF Chat Partial transposition as a direct link between concurrence and negativity 2015 Christopher Eltschka
G. Tóth
Jens Siewert
+ PDF Chat Four-concurrence in the transverse <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>X</mml:mi><mml:mi>Y</mml:mi></mml:mrow></mml:math> spin-1/2 chain 2017 Andreas Osterloh
Ralf Schützhold
+ Quantifying interference in multipartite quantum systems 2020 Rejane Alves de Brito
Bertúlio de Lima Bernardo
+ PDF Chat Entanglement negativity of fermions: Monotonicity, separability criterion, and classification of few-mode states 2019 Hassan Shapourian
Shinsei Ryu
+ PDF Chat Multipartite Generalization of Quantum Discord 2020 Chandrashekar Radhakrishnan
Mathieu Laurière
Tim Byrnes
+ PDF Chat Genuine multiparticle entanglement of permutationally invariant states 2013 Leonardo Novo
Tobias Moroder
Otfried Gühne
+ PDF Chat Detection and measure of genuine tripartite entanglement with partial transposition and realignment of density matrices 2017 Ming Li
Jing Wang
Shu‐Qian Shen
Zhihua Chen
Shao-Ming Fei
+ PDF Chat Classification scheme of pure multipartite states based on topological phases 2014 Markus Johansson
Marie Ericsson
Erik Sjöqvist
Andreas Osterloh
+ PDF Chat Characterizing multipartite entanglement by violation of CHSH inequalities 2020 Ming Li
Huihui Qin
Chengjie Zhang
Shu‐Qian Shen
Shao-Ming Fei
Heng Fan
+ PDF Chat Permutationally Invariant Part of a Density Matrix and Nonseparability of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi></mml:math>-Qubit States 2014 Ting Gao
Fengli Yan
S. J. van Enk

Works Cited by This (20)

Action Title Year Authors
+ PDF Chat Bell inequalities and the separability criterion 2000 Barbara M. Terhal
+ PDF Chat Three qubits can be entangled in two inequivalent ways 2000 Wolfgang Dür
Guifré Vidal
J. I. Cirac
+ PDF Chat Detection of High-Dimensional Genuine Multipartite Entanglement of Mixed States 2010 Marcus Huber
Florian Mintert
Andreas Gabriel
Beatrix C. Hiesmayr
+ PDF Chat Separability properties of tripartite states with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>U</mml:mi><mml:mo>⊗</mml:mo><mml:mi>U</mml:mi><mml:mo>⊗</mml:mo><mml:mi>U</mml:mi></mml:math>symmetry 2001 Tilo Eggeling
Reinhard F. Werner
+ PDF Chat Entanglement of Formation of an Arbitrary State of Two Qubits 1998 William K. Wootters
+ PDF Chat Classification of Mixed Three-Qubit States 2001 A. Acín
Dagmar Bruß
Maciej Lewenstein
Anna Sanpera
+ PDF Chat Exact and asymptotic measures of multipartite pure-state entanglement 2000 Charles H. Bennett
Sandu Popescu
Daniel Rohrlich
John A. Smolin
Ashish V. Thapliyal
+ PDF Chat Three-tangle for rank-three mixed states: Mixture of Greenberger-Horne-Zeilinger,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>W</mml:mi></mml:math>, and flipped-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>W</mml:mi></mml:math>states 2009 Eylee Jung
Mi-Ra Hwang
DaeKil Park
Jin-Woo Son
+ PDF Chat Classification of multiqubit mixed states: Separability and distillability properties 2000 Wolfgang Dür
J. I. Cirac
+ PDF Chat Preparation and measurement of three-qubit entanglement in a superconducting circuit 2010 L. DiCarlo
Matthew D. Reed
Luyan Sun
Blake Johnson
Jerry M. Chow
Jay Gambetta
Luigi Frunzio
S. M. Girvin
M. H. Devoret
R. J. Schoelkopf