ON A GENERALIZATION OF SZEMERÉDI'S THEOREM

Type: Article

Publication Date: 2006-10-13

Citations: 36

DOI: https://doi.org/10.1017/s0024611506015991

Abstract

Let $N$ be a natural number and $A \subseteq [1, \dots, N]^2$ be a set of cardinality at least $N^2 / (\log \log N)^c$, where $c > 0$ is an absolute constant. We prove that $A$ contains a triple $\{(k, m), (k+d, m), (k, m+d) \}$, where $d > 0$. This theorem is a two-dimensional generalization of Szemerédi's theorem on arithmetic progressions.

Locations

  • Proceedings of the London Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ On a Generalization of Szemeredi's Theorem 2005 Ilya D. Shkredov
+ On a two-dimensional analog of Szemeredi's Theorem in Abelian groups 2007 Ilya D. Shkredov
+ On a two-dimensional analogue of Szemerédi's theorem in Abelian groups 2009 Ilya D. Shkredov
+ A Constructive Lower Bound on Szemerédi's Theorem 2017 Vladislav Taranchuk
+ Szemerédi's theorem and problems on arithmetic progressions 2006 Ilya D. Shkredov
+ A generalization of sets without long arithmetic progressions based on Szekeres algorithm 2013 Xiaodong Xu
+ A New Proof of Szemer�di's Theorem for Arithmetic Progressions of Length Four 1998 W. T. Gowers
+ PDF Chat NEW BOUNDS FOR SZEMERÉDI'S THEOREM, III: A POLYLOGARITHMIC BOUND FOR 2017 Ben Green
Terence Tao
+ New bounds for Szemeredi's theorem, II: A new bound for $r_4(N)$ 2006 Ben Green
Terence Tao
+ Συνδυαστική αριθμοθεωρία : αριθμητικές πρόοδοι και που να τις βρείτε 2018 Ιωάννης Τσόκανος
+ Finite Analogs of Szemerédi's Theorem 2009 Paul Raff
Doron Zeilberger
+ New bounds for Szemerédi's theorem, III: A polylogarithmic bound for $r_4(N)$ 2017 Ben Green
Terence Tao
+ New bounds for dimensions of a set uniformly avoiding multi-dimensional arithmetic progressions 2019 Kota Saito
+ PDF Chat Finite analogs of Szemerédi’s theorem 2010 Paul Raff
Doron Zeilberger
+ A generalization of Kraemer's result on difference sets 1992 James A. Davis
+ On product sets of arithmetic progressions 2022 Max Wenqiang Xu
Yunkun Zhou
+ PDF Chat Yet Another Proof Of Szemerédi's Theorem 2010 Ben Green
Terence Tao
+ Polymath's combinatorial proof of the density Hales-Jewett theorem 2012 Martin Klazar
+ A Survey of Problems in Combinatorial Number Theory 1980 Paul Erdős
+ PDF Chat On Roth's theorem on progressions 2011 Tom Sanders