Geometric Bounds for Eigenvalues of Markov Chains

Type: Article

Publication Date: 1991-02-01

Citations: 914

DOI: https://doi.org/10.1214/aoap/1177005980

Abstract

We develop bounds for the second largest eigenvalue and spectral gap of a reversible Markov chain. The bounds depend on geometric quantities such as the maximum degree, diameter and covering number of associated graphs. The bounds compare well with exact answers for a variety of simple chains and seem better than bounds derived through Cheeger-like inequalities. They offer improved rates of convergence for the random walk associated to approximate computation of the permanent.

Locations

  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • The Annals of Applied Probability - View - PDF

Similar Works

Action Title Year Authors
+ Lower bounds for covering times for reversible Markov chains and random walks on graphs 1989 David Aldous
+ The smallest eigenvalue for reversible Markov chains 2004 Xiao‐Dong Zhang
+ PDF Chat Comparison Theorems for Reversible Markov Chains 1993 Persi Diaconis
Laurent Saloff‐Coste
+ PDF Chat The spectral gap of sparse random digraphs 2021 Simon Coste
+ The smallest eigenvalue for reversible Markov chains*1 2004 X ZHANG
+ The Spectral Gap of Sparse Random Digraphs 2017 Simon Coste
+ The Spectral Gap of Sparse Random Digraphs 2017 Simon Coste
+ On the Convergence of Reversible Markov Chains 1993 Madhav P. Desai
Vasant B. Rao
+ Geometric inequalities for the eigenvalues of concentrated Markov chains 2000 Olivier François
+ Geometric inequalities for the eigenvalues of concentrated Markov chains 2000 Olivier François
+ PDF Chat Minorations pour les chaĂźnes de Markov unidimensionnelles 1993 Thierry Coulhon
Laurent Saloff‐Coste
+ Geometric Approaches to the Estimation of the Spectral Gap of Reversible Markov Chains 1993 Salvatore Ingrassia
+ Spectral Methods 2023 SĂ©bastien Roch
+ PDF Chat Sharp Bounds on Random Walk Eigenvalues via Spectral Embedding 2017 Russell Lyons
Shayan Oveis Gharan
+ PDF Chat Some inequalities for reversible Markov chains and branching random walks via spectral optimization 2022 Jonathan Hermon
+ A semidefinite bound for mixing rates of Markov chains 1996 Nabil Kahalé
+ Sharp Bounds on Random Walk Eigenvalues via Spectral Embedding 2012 Russell Lyons
Shayan Oveis Gharan
+ Sharp Bounds on Random Walk Eigenvalues via Spectral Embedding 2012 Russell Lyons
Shayan Oveis Gharan
+ PDF Chat Random matrices: tail bounds for gaps between eigenvalues 2016 Hoi H. Nguyen
Terence Tao
Van Vu
+ Random Walks on Graphs: A Survey 2001 LĂĄszlĂł LovĂĄsz