Unipotent representations and reductive dual pairs over finite fields

Type: Article

Publication Date: 1993-01-01

Citations: 37

DOI: https://doi.org/10.1090/s0002-9947-1993-1173855-4

Abstract

Consider the representation correspondence for a reductive dual pair <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper G 1 comma upper G 2 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">({G_1},{G_2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over a finite field. We consider the question of how the correspondence behaves for unipotent representations. In the special case of cuspidal unipotent representations, and a certain fundamental situation, that of "first occurrence", the representation correspondence takes a cuspidal unipotent representation of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{G_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to one of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{G_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This should serve as a fundamental case in studying the correspondence in general over both finite and local fields.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Unipotent Representations and Reductive Dual Pairs over Finite Fields 1993 Jeffrey Adams
Allen Moy
+ On a correspondence between cuspidal representations of ๐บ๐ฟ_{2๐‘›} and ๐‘†๐‘ฬƒ_{2๐‘›} 1999 David Ginzburg
Stephen Rallis
David Soudry
+ PDF Chat On a relation between ฬƒ๐‘†๐ฟโ‚‚ cusp forms and cusp forms on tube domains associated to orthogonal groups 1981 Stephen Rallis
Gรฉrard Schiffmann
+ Base change and triple product ๐ฟ-series 2022 Ming-Lun Hsieh
Shunsuke Yamana
+ Unipotent representations as a categorical centre 2015 G. Lusztig
+ Geometric local theta correspondence for dual reductive pairs of type II at the Iwahori level 2013 Banafsheh Farang-Hariri
+ Tame supercuspidal representations of ๐บ๐ฟ_{๐‘›} distinguished by orthogonal involutions 2013 Jeffrey Hakim
+ Unitary dual of the non-split inner form of ๐‘†๐‘(8,๐น) 2007 Marcela Hanzer
+ Quadratic base change for ๐‘-adic ๐‘†๐ฟ(2) as a theta correspondence I: Occurrence 1999 David Manderscheid
+ PDF Chat Distinguished tame supercuspidal representations and odd orthogonal periods 2012 Jeffrey Hakim
Joshua M. Lansky
+ Regular supercuspidal representations 2019 Tasho Kaletha
+ Extremal unipotent representations for the finite Howe correspondence 2017 J. Epequin Chavez
+ Extremal unipotent representations for the finite Howe correspondence 2017 J. Epequin Chavez
+ Twisted Lefschetz number formula and ๐‘-adic trace formula 2018 Zhengyu Xiang
+ Principal nilpotent orbits and reducible principal series 2002 Wentang Kuo
+ Duality for spherical representations in exceptional theta correspondences 2017 Hung Yean Loke
Gordan Savin
+ Supercuspidal representations: An exhaustion theorem 2006 Ju-Lee Kim
+ Explicit local Jacquet-Langlands correspondence: the non-dyadic wild case 2017 Colin J. Bushnell
Guy Henniart
+ Explicit local Jacquet-Langlands correspondence: the non-dyadic wild case 2017 Colin J. Bushnell
Guy Henniart
+ Relations between cusp forms sharing Hecke eigenvalues 2022 Dipendra Prasad
Ravi Raghunathan