Products of involution classes in infinite symmetric groups

Type: Article

Publication Date: 1988-01-01

Citations: 1

DOI: https://doi.org/10.1090/s0002-9947-1988-0940225-9

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an infinite set. Denote by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S Subscript upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{S_A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the group of all permutations of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R Subscript i"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{R_i}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, denote the class of involutions of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> moving <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper A EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">|A|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> elements and fixing <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="i"> <mml:semantics> <mml:mi>i</mml:mi> <mml:annotation encoding="application/x-tex">i</mml:annotation> </mml:semantics> </mml:math> </inline-formula> elements <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis 0 less-than-or-slanted-equals i less-than-or-slanted-equals StartAbsoluteValue upper A EndAbsoluteValue right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mi>i</mml:mi> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(0 \leqslant i \leqslant |A|)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The products <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R Subscript i Baseline upper R Subscript j"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{R_i}{R_j}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> were determined in [<bold>M1</bold>]. In this article we treat the products <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R Subscript i 1 Baseline midline-horizontal-ellipsis upper R Subscript i Sub Subscript n"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>i</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>i</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{R_{{i_1}}} \cdots {R_{{i_n}}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-slanted-equals 3"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geqslant 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let INF denote the set of permutations in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S Subscript upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{S_A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> moving infinitely many elements. We show: (1) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R Subscript i 1 Baseline midline-horizontal-ellipsis upper R Subscript i Sub Subscript n Baseline equals upper S Subscript upper A"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>i</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>i</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{R_{{i_1}}} \cdots {R_{{i_n}}} = {S_A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-slanted-equals 4"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geqslant 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. (2)(a) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R Subscript i Baseline upper R Subscript j Baseline upper R Subscript k Baseline equals upper I upper N upper F"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>INF</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{R_i}{R_j}{R_k} = \operatorname {INF}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet i comma j comma k EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>i</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>j</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>k</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ i,\,j,\,k\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains two integers of different parity; (b) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R Subscript i Baseline upper R Subscript j Baseline upper R Subscript k Baseline equals upper S Subscript upper A"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{R_i}{R_j}{R_k} = {S_A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="i plus j plus k greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>+</mml:mo> <mml:mi>j</mml:mi> <mml:mo>+</mml:mo> <mml:mi>k</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">i + j + k &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and all integers in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet i comma j comma k EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>i</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>j</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>k</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ i,\,j,\,k\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> have the same parity. (3) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R 0 cubed equals upper S Subscript upper A Baseline minus upper E"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>R</mml:mi> <mml:mn>0</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> <mml:mi class="MJX-variant" mathvariant="normal">∖<!-- ∖ --></mml:mi> <mml:mi>E</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">R_0^3 = {S_A}\backslash E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="theta element-of upper E"> <mml:semantics> <mml:mrow> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>E</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\theta \in E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> iff <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="theta"> <mml:semantics> <mml:mi>θ<!-- θ --></mml:mi> <mml:annotation encoding="application/x-tex">\theta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies one of the following three conditions: (i) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="theta"> <mml:semantics> <mml:mi>θ<!-- θ --></mml:mi> <mml:annotation encoding="application/x-tex">\theta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> moves precisely three elements. (ii) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="theta"> <mml:semantics> <mml:mi>θ<!-- θ --></mml:mi> <mml:annotation encoding="application/x-tex">\theta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> moves precisely five elements. (iii) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="theta"> <mml:semantics> <mml:mi>θ<!-- θ --></mml:mi> <mml:annotation encoding="application/x-tex">\theta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> moves precisely seven elements and has order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="12"> <mml:semantics> <mml:mn>12</mml:mn> <mml:annotation encoding="application/x-tex">12</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These results were announced in 1973 in [<bold>MO</bold>]. (1) and part of (2)(a) were generalized recently by Droste [<bold>D1, D2</bold>].

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Conjugacy classes whose square is an infinite symmetric group 1989 Gadi Moran
+ PDF Chat Closed hulls in infinite symmetric groups 1973 Franklin Haimo
+ PDF Chat Infinite products of finite simple groups 1996 Jan Saxl
Saharon Shelah
Simon Thomas
+ PDF Chat The group of automorphisms of a class of finite 𝑝-groups 1982 Arye Juhász
+ PDF Chat Cubes of conjugacy classes covering the infinite symmetric group 1985 Manfred Droste
+ A product decomposition of infinite symmetric groups 2002 Ákos Seress
+ 𝑛-inner automorphisms of finite groups 2003 Fernando Szechtman
+ A note on groups generated by involutions and sharply 2-transitive groups 2014 George Glauberman
Avinoam Mann
Yoav Segev
+ PDF Chat 𝑁𝐾₁ of finite groups 1987 Dennis R. Harmon
+ PDF Chat Commutators and Π-subgroups 1990 Rolf Brandl
+ PDF Chat Multiplicity-free induced characters of symmetric groups 2024 Pavel Turek
+ Involutions in Weyl groups 2000 Robert Kottwitz
+ Automorphism Orbits and Element Orders in Finite Groups: Almost-Solubility and the Monster 2023 Alexander Bors
Michael Giudici
Cheryl E. Praeger
+ PDF Chat Groups of finite weight 1981 A. H. Rhemtulla
+ PDF Chat On automorphism groups and endomorphism rings of abelian 𝑝-groups 1975 Jutta Hausen
+ An equivariant Brauer semigroup and the symmetric imprimitivity theorem 2000 Astrid an Huef
Iain Raeburn
Dana P. Williams
+ PDF Chat Squares of conjugacy classes in the infinite symmetric groups 1987 Manfred Droste
+ PDF Chat On Sylow intersections in finite groups 1984 Geoffrey R. Robinson
+ Finite groups and their coprime automorphisms 2016 Emerson de Melo
Pavel Shumyatsky
+ PDF Chat Closed subgroups of lattice-ordered permutation groups 1972 Stephen H. McCleary