Amenability and superharmonic functions

Type: Article

Publication Date: 1993-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9939-1993-1164149-7

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a countable group and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding="application/x-tex">\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a symmetric and aperiodic probability measure on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is amenable if and only if every positive superharmonic function is nearly constant on certain arbitrarily large subsets of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We use this to show that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is amenable, then the Martin boundary of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains a fixed point. More generally, we show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is amenable if and only if each member of a certain family of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spaces contains a fixed point.

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • SUNY Digital Repository Support (State University of New York System) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Subharmonicity, the distance function, and 𝑎-admissible sets 1991 Stephen J. Gardiner
+ PDF Chat A uniqueness theorem for superharmonic functions in 𝑅ⁿ 1982 Joel L. Schiff
+ PDF Chat Generators for 𝐴(Ω) 1974 Nessim Sibony
John Wermer
+ PDF Chat Nonintegrability of superharmonic functions 1991 Noriaki Suzuki
+ PDF Chat Amenability and derivations of the Fourier algebra 1988 Brian Forrest
+ PDF Chat Differentiability criteria and harmonic functions on 𝐵ⁿ 1983 Patrick Ahern
Kenneth D. Johnson
+ PDF Chat On subharmonicity of the capacity of the spectrum 1981 Zbigniew Słodkowski
+ PDF Chat Note on the integrability of superharmonic functions 1993 Noriaki Suzuki
+ PDF Chat Iterated fine limits and iterated nontangential limits 1972 Kohur Gowrisankaran
+ ℬ(ℓ^{𝓅}) is never amenable 2010 Volker Runde
+ PDF Chat Almost periodic operators in 𝑉𝑁(𝐺) 1990 Ching Chou
+ The amenability constant of the Fourier algebra 2005 Volker Runde
+ Composition operators and generalized primes 2023 Athanasios Kouroupis
+ PDF Chat Subharmonic functions outside a compact set in 𝑅ⁿ 1982 Victor Anandam
+ PDF Chat Ergodic properties that lift to compact group extensions 1988 E. Arthur Robinson
+ Integrability of superharmonic functions, uniform domains, and Hölder domains 1999 Yasuhiro Gotoh
+ Harmonic functions on Alexandrov spaces and their applications 2003 Anton Petrunin
+ The atomic decomposition in 𝐿¹(𝑅ⁿ) 2007 Wael Abu-Shammala
Alberto Torchinsky
+ PDF Chat Inner amenable locally compact groups 1991 Anthony Lau
Alan L. T. Paterson
+ PDF Chat An Abelian theorem for a class of subharmonic functions 1977 Faruk F. Abi-Khuzam