Data-Based Optimal Smoothing of Orthogonal Series Density Estimates

Type: Article

Publication Date: 1981-01-01

Citations: 102

DOI: https://doi.org/10.1214/aos/1176345341

Abstract

Let $f$ be a density possessing some smoothness properties and let $X_1,\cdots, X_n$ be independent observations from $f$. Some desirable properties of orthogonal series density estimates $f_{n,m,\lambda}$ of $f$ of the form $f_{n,m,\lambda}(t) = \sum^n_{\nu = 1} \frac{\hat{f}_\nu}{(1 + \lambda\nu^{2m})} \phi_\nu(t)$ where $\{\phi_\nu\}$ is an orthonormal sequence and $\hat{f}_\nu = (1/n)\sum^n_{j=1} \phi_\nu(X_j)$ is an estimate of $f_\nu = \int \phi_\nu(t)f(t) dt$, are discussed. The parameter $\lambda$ plays the role of a bandwidth or "smoothing" parameter and $m$ controls a "shape" factor. The major novel result of this note is a simple method for estimating $\lambda$ (and $m$) from the data in an objective manner, to minimize integrated mean square error. The results extend to multivariate estimates.

Locations

  • The Annals of Statistics - View - PDF

Similar Works

Action Title Year Authors
+ Data-based optimal smoothing of a wavelet density estimator 1997 Hongjun Luo
John E. Angus
+ Orthogonal series density estimation 2010 Sam Efromovich
+ Estimation of a Multivariate Density by Orthogonal Series 1982 Adam Krzyżak
M. Pawlak
+ Adaptive orthogonal series density estimation for small samples 1996 Sam Efromovich
+ Optimal smoothing parameter of Fourier series density estimates under an autoregressive dependence model 1992 A.K. Hosni
+ Adaptive Bayesian density regression for high-dimensional data 2015 Weining Shen
Subhashis Ghosal
+ Approximation of density functions by orthogonal series with grouped data 1994 Lucio Barabesi
Lorenzo Fattorini
+ Estimation of smooth functionals in high-dimensional models: bootstrap chains and Gaussian approximation 2020 Vladimir Koltchinskii
+ Optimal smoothing parameter of fourier series density estimates under an autoregressive dependence model 1991 A.K. Honsi
+ PDF Chat Efficient spline orthogonal basis for representation of density functions 2024 Jana Burkotová
Ivana Pavlů
Hiba Nassar
Jitka Machalová
Karel Hron
+ Consistent estimation of density-weighted average derivative by orthogonal series method 1995 Б. Л. С. Пракаса Рао
+ Optimal Smoothing of Density Estimates 1977 Grace Wahba
+ NONPARAMETRIC DENSITY ESTIMATION BY B-SPLINE DUALITY 2019 Zhenyu Cui
Justin Kirkby
Duy Nguyen
+ Orthogonal Polynomials Approximation Algorithm (OPAA):a functional analytic approach to estimating probability densities 2022 Lilian Wong
+ Multivariate wavelet-based density estimation with size-biased data 2015 Esmaeil Shirazi
Hassan Doosti
+ PDF Chat Optimal Wavelet Estimation of Density Derivatives for Size-Biased Data 2014 Jinru Wang
Zijuan Geng
Fengfeng Jin
+ On nonparametric estimation of a functional of a probability density 1986 M. Pawlak
+ PDF Chat An Adaptive Orthogonal-Series Estimator for Probability Density Functions. 1978 G. Leigh Anderson
Rui J. P. de Figueiredo
+ Nonparametric Density Estimation by B-spline Duality 2019 Zhenyu Cui
Justin Kirkby
Duy Nguyen
+ Splinets -- efficient orthonormalization of the B-splines 2019 Xijia Liu
Hiba Nassar
Krzysztof Podgórski