On pseudometrics for generalized uniform structures

Type: Article

Publication Date: 1965-01-01

Citations: 4

DOI: https://doi.org/10.1090/s0002-9939-1965-0176442-8

Abstract

Proof.If M is Ricci flat it is trivially Einstein and, since L2 -HL = 0, one of the principal curvatures is zero.If R* = bl, then L2-HL + bI = 0.If K = 0, then there is a zero principal curvature and a unit principal vector X with LX = 0. Hence bX = 0soR* = 0.In the case « = 3, the characteristic polynomial L% -HL2 + JL -KI = 0 implies JL = 0, and since Lm = 0 implies J(m) = 0, we have J=0.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ On generalized m-quasi-Einstein manifolds with constant scalar curvature 2015 Zejun Hu
Dehe Li
Jing Xu
+ ON GENERALIZED PSEUDO QUASI-EINSTEIN MANIFOLDS 2011 Absos Ali Shaikh
Ananta Patra
+ Einstein-Kaehler metrics on complex surfaces and uniformization 1988 亮一 小林
+ On the Rigidity of Generalized Quasi-Einstein Manifolds 2019 Mir Ahmad Mirshafeazadeh
Behroz Bidabad
+ Classification of Quasi-EinsteinMetric 2019 金楠 李
+ PDF Chat Uniformization of pseudo-riemannian locally homogeneous manifolds 2014 Nicolas Tholozan
+ On vanishing-curvature extensions of Lorentzian metrics 1994 Lars Alexandersson
+ On the geometry of generalized metrics 2003 Tom Mestdag
József Szilasi
Viktória É. Tóth
+ PDF Chat Characterization of Bach and Cotton Tensors on a Class of Lorentzian Manifolds 2024 Yanlin Li
M. S. Siddesha
H. Aruna Kumara
M. M. Praveena
+ The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds 2007 Peter Gilkey
+ Pseudo-umbilical and minimal manifolds with constant Riemannian curvature 1974 Lieven Vanhecke
+ A Characterization of Flat Pseudo-Riemannian Manifolds 2019 J. de Vries
+ Characterizations and integral formulae for generalized m-quasi-Einstein metrics 2014 Abdênago Barros
Ernani Ribeiro
+ PDF Chat Generalized normal homogeneous Riemannian metrics on spheres and projective spaces 2013 V. N. Berestovskiĭ
Yu. G. Nikonorov
+ Einstein Metrics Induced by Natural Riemann Extensions 2017 Cornelia-Livia Bejan
Şemsi̇ Eken Meri̇ç
Erol Kılıç
+ Rigidity of Riemannian manifolds with vanishing generalized Bach tensor 2021 Guangyue Huang
Bingqing Ma
Xingxiao Li
+ On uniformization of complex manifolds 1978 Robert C. Gunning
+ On a class of generalized quasi-Einstein manifolds 2006 Cıhan Özgür
+ Rigid properties of quasi-almost-Einstein metrics 2012 Wang Linfeng
+ Canonical Metrics in Generalized Complex Geometry 2021 Mario García-Fernández
Jeffrey Streets