Quantum Magnetic Hamiltonians with Remarkable Spectral Properties

Type: Article

Publication Date: 1980-06-23

Citations: 50

DOI: https://doi.org/10.1103/physrevlett.44.1706

Abstract

The Hamiltonian, $H$, of a spinless particle moving in two dimensions in an axially symmetric magnetic field $B(\ensuremath{\rho})$ is considered. If $B(\ensuremath{\rho})\ensuremath{\sim}{\ensuremath{\rho}}^{\ensuremath{-}\ensuremath{\alpha}}$ for $\ensuremath{\rho}$, large with $0<\ensuremath{\alpha}<1$, then it is shown that $H$ has spectrum [$0, \ensuremath{\infty}$) with only eigenvectors and eigenvalues dense in [$0, \ensuremath{\infty}$). If $\ensuremath{\alpha}=1$, then the spectrum is a dense point spectrum in [0, $c$] for suitable $c$ and absolutely continuous in [$c, \ensuremath{\infty}$).

Locations

  • Physical Review Letters - View
  • CaltechAUTHORS (California Institute of Technology) - View - PDF

Similar Works

Action Title Year Authors
+ Spectral properties of hamiltonians with a magnetic field at a fixed pseudomomentum. I 1997 Semjon Vugalter
G. M. Zhislin
+ Spectral properties of Hamiltonians with a magnetic field at a fixed pseudomomentum. III 1999 G. M. Zhislin
+ Spectral properties of Hamiltonians with a magnetic field at a fixed pseudomoment. II 1999 G. M. Zhislin
+ PDF Chat Spectral accumulation for magnetic quantum Hamiltonians 2013 Diomba Sambou
+ Spectral properties of Schrödinger operators with magnetic fields for a spin 12 particle 1991 Ichirō Shigekawa
+ On the spectrum of the periodic magnetic Hamiltonian 1999 Alexander V. Sobolev
+ The discrete spectrum of the Hamiltonians of atoms in a homogeneous magnetic field 2000 Semjon Vugalter
G. M. Zhislin
+ Spectral properties of quantum mechanical operators with magnetic field 2008 Mikael Persson
+ On spin Hamiltonians with random magnetic moments 1974 Eytan Barouch
I. Oppenheim
+ Magnetic Schrödinger operators and effective Hamiltonians 1991 Johannes Sjöstrand
+ Spectral Analysis of Quantum Hamiltonians 2012 Rafael D. Benguria
Eduardo Friedman
Marius Măntoiu
+ On semi-classical spectral series for an atom in a periodic polarized electric field 2021 Abdelwaheb Ifa
H. Louati
Michel Rouleux
+ On lacunae in the spectrum of the three-dimensional periodic Schrödinger operator with a magnetic field 1995 V. A. Geǐler
V. A. Margulis
I. I. Chuchaev
+ PDF Chat Magnetic Schrödinger Operator: Geometry, Classical and Quantum Dynamics and Spectral Asymptotics 2007 Victor Ivrii
+ Spectral theory for magnetic Schrodinger operators and applications 2008 Bernard Helffer
+ A Lieb-Thirring Bound for a Magnetic Pauli Hamiltonian 1997 Luca Bugliaro
Jürg Fröhlich
Gian Michele Graf
J. Stubbe
Charles Fefferman
+ Hamiltonian operators with maximal eigenvalues 1984
+ Schrödinger equations with an external magnetic field: spectral problems & semiclassical states 2015 Nys
+ Spectra of Hamiltonians 2007 E. B. Manoukian
+ Periodic Schrödinger Operators with Constant Weak Magnetic Fields 1989 Bernard Helffer
Johannes Sjöstrand