On universality of the smoothed eigenvalue density of large random matrices

Type: Article

Publication Date: 1999-09-07

Citations: 4

DOI: https://doi.org/10.1088/0305-4470/32/38/101

Abstract

We describe the resolvent approach for the rigorous study of the mesoscopic regime of Hermitian matrix spectra. We present results reflecting universal behaviour of the smoothed density of the eigenvalue distribution of large random matrices.

Locations

  • Journal of Physics A Mathematical and General - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Mesoscopic Central Limit Theorem for non-Hermitian Random Matrices 2022 Giorgio Cipolloni
L谩szl贸 End艖s
Dominik Schr枚der
+ Eigenvalue Fluctuations of Random Matrices beyond the Gaussian Universality Class 2013 Elliot Paquette
+ PDF Chat Spectra of Sparse Non-Hermitian Random Matrices: An Analytical Solution 2012 Izaak Neri
Fernando L. Metz
+ Mesoscopic eigenvalue statistics of Wigner matrices 2016 Yukun He
Antti Knowles
+ PDF Chat Stability of the matrix Dyson equation and random matrices with correlations 2018 Oskari Ajanki
L谩szl贸 Erd艖s
Torben Kr眉ger
+ Universality of the Empirical Spacing Distribution for the Unfolded Spectrum of Random Matrices 2015 Kristina Schubert
Martin Venker
+ Single eigenvalue fluctuations of general Wigner-type matrices 2021 Benjamin Landon
Patrick Lopatto
Philippe Sosoe
+ PDF Chat Single eigenvalue fluctuations of general Wigner-type matrices 2023 Benjamin Landon
Patrick Lopatto
Philippe Sosoe
+ On fluctuations of eigenvalues of random Hermitian matrices 1998 Kurt Johansson
+ PDF Chat Mesoscopic eigenvalue statistics of Wigner matrices 2017 Yukun He
Antti Knowles
+ PDF Chat Mesoscopic eigenvalue density correlations of Wigner matrices 2019 Yukun He
Antti Knowles
+ Fluctuations in the spectrum of random matrices 2021 Giorgio Cipolloni
+ Mesoscopic central limit theorem for non-Hermitian random matrices 2023 Giorgio Cipolloni
L谩szl贸 Erd艖s
Dominik Schr枚der
+ Universal scaling of the tail of the density of eigenvalues in random matrix models 1991 Mark J. Bowick
E. Br茅zin
+ How much can the eigenvalues of a random Hermitian matrix fluctuate? 2019 Tom Claeys
Benjamin Fahs
Gaultier Lambert
Christian A. Webb
+ Mesoscopic eigenvalue statistics for Wigner-type matrices 2023 Volodymyr Riabov
+ PDF Chat Universality of Wigner random matrices: a survey of recent results 2011 L谩szl贸 Erd艖s
+ PDF Chat On the Local Eigenvalue Statistics for Random Band Matrices in the Localization Regime 2022 Peter D. Hislop
M. Krishna
+ How much can the eigenvalues of a random Hermitian matrix fluctuate 2019 Tom Claeys
Benjamin Fahs
Gaultier Lambert
Christian Webb
+ PDF Chat Asymptotic properties of resolvents of large dilute Wigner random matrices 2010 Slim Ayadi
O. Khorunzhiy