Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite L2 norm

Type: Article

Publication Date: 2001-12-01

Citations: 66

DOI: https://doi.org/10.1016/s0021-7824(01)01224-7

Locations

  • Journal de Mathématiques Pures et Appliquées - View

Similar Works

Action Title Year Authors
+ On the 1D Cubic Nonlinear Schrodinger Equation in an Almost Critical Space 2014 Shaoming Guo
+ On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity 2020 Vanessa Andrade de Barros
Simão Correia
Filipe Oliveira
+ Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension 2014 Mihaela Ifrim
Daniel Tataru
+ PDF Chat On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity 2022 Vanessa Barros
Simão Correia
Filipe Oliveira
+ PDF Chat Global existence for defocusing cubic NLS and Gross–Pitaevskii equations in three dimensional exterior domains 2008 Ramona Anton
+ On the 1D Cubic NLS in an Almost Critical Space 2014 Shaoming Guo
+ Local Well-posedness of the Derivative Schrödinger Equation in Higher Dimension for Any Large Data 2022 Boling Guo
Zhaohui Huo
+ PDF Chat Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension 2015 Mihaela Ifrim
Daniel Tataru
+ Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces 2018 Tadahiro Oh
Yuzhao Wang
+ PDF Chat On the 1D Cubic Nonlinear Schrödinger Equation in an Almost Critical Space 2016 Shaoming Guo
+ PDF Chat Global well-posedness for the non-linear Maxwell-Schrödinger system 2021 Paolo Antonelli
Pierangelo Marcati
Raffaele Scandone
+ Bi- and trilinear Schroedinger estimates in one space dimension with applications to cubic NLS and DNLS 2005 Axel Gruenrock
+ Global bounds for the cubic nonlinear Schr\"odinger equation (NLS) in one space dimension 2014 Mihaela Ifrim
Daniel Tataru
+ PDF Chat Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators 2018 Ivica Nakić
Matthias Täufer
Martin Tautenhahn
Ivan Veselić
+ Global well-posedness for Schrodinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces 2001 Hideo Takaoka
+ PDF Chat Scattering for the nonlinear Schrödinger equation with a general one-dimensional confinement 2015 Rémi Carles
Clément Gallo
+ Global well-posedness for the higher order non-linear Schrödinger equation in modulation spaces 2024 Xavier Carvajal
Pedro Gamboa
Rui Santos
+ Almost sure local well-posedness for cubic nonlinear Schrodinger equation with higher order operators 2022 Jean‐Baptiste Casteras
Juraj Földes
Gennady Uraltsev
+ PDF Chat Dissipative nonlinear schrödinger equations for large data in one space dimension 2019 Gaku Hoshino
+ Correction to: Local Well-Posedness for the Nonlinear Schrödinger Equation in the Intersection of Modulation Spaces $$M_{p, q}^s({\mathbb {R}}^d) \cap M_{\infty , 1}({\mathbb {R}}^d)$$ 2020 Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos