Well-posedness and regularity of generalized Navier–Stokes equations in some critical Q-spaces

Type: Article

Publication Date: 2010-08-05

Citations: 85

DOI: https://doi.org/10.1016/j.jfa.2010.07.013

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal of Functional Analysis - View

Similar Works

Action Title Year Authors
+ Well-posedness and regularity of generalized Navier-Stokes equations in some Critical $Q-$spaces 2009 Pengtao Li
Zhichun Zhai
+ Ill-posedness for the stationary Navier-Stokes equations in critical Besov spaces 2022 Jinlu Li
Yanghai Yu
Weipeng Zhu
+ Regularity aspects of the Navier-Stokes equations in critical spaces 2020 Dallas Albritton
+ On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces 2014 Noboru Chikami
Raphaël Danchin
+ On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces 2014 Noboru Chikami
Raphaël Danchin
+ Ill-posedness for the Navier-Stokes equations in critical Besov spaces $\dot B^{-1}_{\infty,q}$ 2014 Baoxiang Wang
+ Ill-posedness for the Navier-Stokes equations in critical Besov spaces $\dot B^{-1}_{\infty,q}$ 2014 Baoxiang Wang
+ On the well-posedness of the full compressible Navier–Stokes system in critical Besov spaces 2015 Noboru Chikami
Raphaël Danchin
+ Well-posedness for fractional Navier-Stokes equations in critical spaces close to $\dot{B}^{-(2β-1)}_{\infty,\infty}(\mathbb{R}^{n})$ 2009 Zhichun Zhai
+ Well-posedness for the Navier–Stokes equations with datum in Sobolev–Fourier–Lorentz spaces 2016 D. Q. Khai
N. M. Tri
+ On the continuity of the solutions to the Navier-Stokes equations with initial data in critical Besov spaces 2016 Reinhard Farwig
Yoshikazu Giga
Pen-Yuan Hsu
+ ILL-POSEDNESS FOR THE COMPRESSIBLE NAVIER–STOKES EQUATIONS WITH THE VELOCITY IN FRAMEWORK 2017 Jiecheng Chen
Renhui Wan
+ PDF Chat On the continuity of the solutions to the Navier–Stokes equations with initial data in critical Besov spaces 2019 Reinhard Farwig
Yoshikazu Giga
Pen-Yuan Hsu
+ Well-posedness for fractional Navier-Stokes equations in critical spaces close to $\dot{B}^{-(2\beta-1)}_{\infty,\infty}(\mathbb{R}^{n})$ 2009 Zhichun Zhai
+ Semigroup characterization of Besov type Morrey spaces and well-posedness of generalized Navier–Stokes equations 2012 Chin-Cheng Lin
Qixiang Yang
+ Properties of Navier-Stokes mild solutions in sub-critical Besov spaces whose regularity exceeds the critical value by $\boldsymbol{ε\in(0,1)}$ 2022 Joseph P. Davies
Gabriel S. Koch
+ Ill-posedness for the compressible Navier–Stokes equations under barotropic condition in limiting Besov spaces 2021 Tsukasa Iwabuchi
Takayoshi Ogawa
+ Global well-posedness of the incompressible fractional Navier–Stokes equations in Fourier–Besov spaces with variable exponents 2018 Shaolei Ru
Muhammad Zainul Abidin
+ PDF Chat Well-posedness in critical spaces for the system of compressible Navier–Stokes in larger spaces 2011 Boris Haspot
+ A critical functional framework for the inhomogeneous Navier–Stokes equations in the half-space 2008 Raphaël Danchin
Piotr B. Mucha