The bilinear Hilbert transform is pointwise finite

Type: Article

Publication Date: 1997-08-31

Citations: 7

DOI: https://doi.org/10.4171/rmi/227

Abstract

Let f \in L^\infty and g \in L^2 be supported on [0,1]. Then the principal value integral below exists in L^1 . \mathrm {p.v.} \int f(x + y) g (x – y) \frac{dy}{y}.

Locations

  • Revista Matemática Iberoamericana - View - PDF

Similar Works

Action Title Year Authors
+ $L^{p}$ estimates for the bilinear Hilbert transform for $1/2 2014 Wei Dai
Guozhen Lu
+ PDF Chat <i> L <sup>p</sup> </i> estimates for the bilinear Hilbert transform 1997 Michael T. Lacey
Christoph Thiele
+ The bilinear Hilbert transform 2013 Camil Muscalu
Wilhelm Schlag
+ $L^{p}$ estimates for the bilinear Hilbert transform for $1/2<p\leq2/3$: A counterexample and generalizations to non-smooth symbols 2014 Wei Dai
Guozhen Lu
+ On the bilinear Hilbert transform 1998 Michael T. Lacey
+ Distributional estimates for the bilinear Hilbert transform 2006 Dmitriy Bilyk
Loukas Grafakos
+ PDF Chat On Calderón’s conjecture for the bilinear Hilbert transform 1998 Michael T. Lacey
Christoph Thiele
+ PDF Chat Uniform bounds for the bilinear Hilbert transforms, I 2004 Loukas Grafakos
Xiaochun Li
+ PDF Chat Uniform Bounds for the Bilinear Hilbert Transforms, II 2006 Xiaochun Li
+ Bilinear Hilbert Transforms and (Sub)Bilinear Maximal Functions along Convex Curves 2020 Junfeng Li
Haixia Yu
+ PDF Chat Bilinear Hilbert transforms and (sub)bilinear maximal functions along convex curves 2021 Junfeng Li
Haixia Yu
+ Endpoint bounds for the bilinear Hilbert transform 2014 Francesco Di Plinio
Christoph Thiele
+ Endpoint bounds for the bilinear Hilbert transform 2014 Francesco Di Plinio
Christoph Thiele
+ A spectral theorem for bilinear compact operators in Hilbert spaces 2021 Eduardo Brandani da Silva
Dicesar Lass Fernandez
Marcus Vinícius de Andrade Neves
+ Endpoint bounds for the bilinear Hilbert transform 2015 Francesco Di Plinio
Christoph Thiele
+ PDF Chat Bilinear functionals on the space of bounded, measurable functions 1937 Herman H. Goldstine
+ On the boundedness of the bilinear Hilbert transform along “non-flat” smooth curves. The Banach triangle case $(L^r, 1 ≤ r &lt; \infty)$ 2018 Victor Lie
+ Estimates for a certain bilinear Fourier integral operator 2024 Tomoya Kato
Akihiko Miyachi
Naohito Tomita
+ Bilinear Forms on H ∞ and Bounded Bianalytic Functions 1984 Jean Bourgain
+ Hilbert function spaces 2017 Orr Shalit