On divisibility of the class number ℎ⁺ of the real cyclotomic fields of prime degree 𝑙

Type: Article

Publication Date: 1998-01-01

Citations: 11

DOI: https://doi.org/10.1090/s0025-5718-98-00916-8

Abstract

In this paper, criteria of divisibility of the class number <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h Superscript plus"> <mml:semantics> <mml:msup> <mml:mi>h</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">h^+</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the real cyclotomic field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Q left-parenthesis zeta Subscript p Baseline plus zeta Subscript p Superscript negative 1 Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mi>ζ<!-- ζ --></mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>ζ<!-- ζ --></mml:mi> <mml:mi>p</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbf {Q}(\zeta _p+\zeta _p^{-1})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a prime conductor <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of a prime degree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="l"> <mml:semantics> <mml:mi>l</mml:mi> <mml:annotation encoding="application/x-tex">l</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by primes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding="application/x-tex">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the order modulo <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="l"> <mml:semantics> <mml:mi>l</mml:mi> <mml:annotation encoding="application/x-tex">l</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of which is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartFraction l minus 1 Over 2 EndFraction"> <mml:semantics> <mml:mfrac> <mml:mrow> <mml:mi>l</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding="application/x-tex">\frac {l-1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, are given. A corollary of these criteria is the possibility to make a computational proof that a given <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding="application/x-tex">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> does not divide <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h Superscript plus"> <mml:semantics> <mml:msup> <mml:mi>h</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">h^+</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (conductor) such that both <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartFraction p minus 1 Over 2 EndFraction comma StartFraction p minus 3 Over 4 EndFraction"> <mml:semantics> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding="application/x-tex">\frac {p-1}{2},\frac {p-3}{4}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are primes. Note that on the basis of Schinzel’s hypothesis there are infinitely many such primes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Mathematics of Computation - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Class numbers of real cyclotomic fields of prime conductor 2002 René Schoof
+ On the divisibility of the class number of imaginary quadratic number fields 2009 Stéphane Louboutin
+ PDF Chat On the first factor of the class number of a cyclotomic field 1982 Ke Qin Feng
+ Divisibility of Class Numbers of Real Quadratic Fields (解析的整数論とその周辺 研究集会報告集) 2006 Kalyan Chakraborty
+ On divisibility of the class number h+ of the real cyclotomic fields $$\mathbb{Q}(\zeta _p + \zeta _p^{1 - } )$$ by primes q ≤5000by primes q ≤5000 1997 S. Jakubec
Pavel Trojovský
+ PDF Chat A note on class-number one in certain real quadratic and pure cubic fields 1986 M. Tennenhouse
H. C. Williams
+ PDF Chat Necessary and sufficient conditions for the class number of a real quadratic field to be one, and a conjecture of S. Chowla 1988 R. A. Mollin
+ Greenberg’s conjecture for real quadratic fields and the cyclotomic ℤ₂-extensions 2021 Lorenzo Pagani
+ Divisibility of Class Numbers of Quadratic Fields: Qualitative Aspects 2018 Kalyan Chakraborty
Azizul Hoque
Richa Sharma
+ Characters of 𝑝’-degree with cyclotomic field of values 2006 Gabriel Navarro
Pham Huu Tiep
+ On divisibility of class number of real Abelian fields of prime conductor 1993 S. Jakubec
+ PDF Chat Euclid’s algorithm in the cyclotomic field 𝑄(𝜁₁₆) 1977 Timo Ojala
+ A condition for divisibility of the class number of real pth cyclotomic field by an odd prime distinct from p 1999 Ken-ichi Yoshino
+ PDF Chat The calculation of a large cubic class number with an application to real cyclotomic fields 1983 E. Seah
Lawrence C. Washington
Hugh C. Williams
+ PDF Chat Faster computation of the first factor of the class number of 𝑄(𝜁_{𝑝}) 1995 V. Jha
+ On the class number of the maximal real subfields of a family of cyclotomic fields 2023 Mahesh Kumar Ram
+ PDF Chat On the ordinarity of the maximal real subfield of cyclotomic function fields 2014 Daisuke Shiomi
+ On real quadratic function fields of Chowla type with ideal class number one 1999 Keqin Feng
Weiqun Hu
+ On Class Numbers Of Real Quadratic Fields In A Special Family And Cyclotomic Subfields 2023 Levi Borevitz
+ PDF Chat 𝑝-adic computation of real quadratic class numbers 1990 Johannes Buchmann
Jonathan W. Sands
Hywel C Williams