A note on the cone multiplier

Type: Article

Publication Date: 1993-01-01

Citations: 42

DOI: https://doi.org/10.1090/s0002-9939-1993-1098404-6

Abstract

In this paper we study the convolution operator given on the Fourier transform side by multiplication by <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript alpha Baseline left-parenthesis x comma z right-parenthesis equals phi left-parenthesis z right-parenthesis left-parenthesis 1 minus StartAbsoluteValue x EndAbsoluteValue slash z right-parenthesis Subscript plus Superscript alpha Baseline comma left-parenthesis x comma z right-parenthesis element-of bold upper R squared times bold upper R comma alpha greater-than 0 comma"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>m</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>z</mml:mi> <mml:msubsup> <mml:mo stretchy="false">)</mml:mo> <mml:mo>+</mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:msubsup> <mml:mo>,</mml:mo> <mml:mspace width="2em" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo>×<!-- × --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace width="thickmathspace" /> <mml:mi>α<!-- α --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{m_\alpha }(x,z) = \phi (z)(1 - |x|/z)_ + ^\alpha ,\qquad (x,z) \in {{\mathbf {R}}^2} \times {\mathbf {R}},\;\alpha &gt; 0,</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi element-of upper C 0 Superscript normal infinity Baseline left-parenthesis 1 comma 2 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi \in C_0^\infty (1,2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We will prove that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m Subscript alpha"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>m</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{m_\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> defines a bounded operator on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript 4 Baseline left-parenthesis bold upper R cubed right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>4</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^4}({{\mathbf {R}}^3})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha greater-than one eighth"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mstyle displaystyle="false" scriptlevel="0"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>8</mml:mn> </mml:mfrac> </mml:mstyle> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha &gt; \tfrac {1} {8}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Furthermore, as a generalization of a result of C. Fefferman (Acta Math. <bold>124</bold> (1970), 9-36), we will show that an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper L squared comma upper L Superscript p Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">({L^2},{L^p})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> restriction theorem for compact <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Superscript normal infinity"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{C^\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> submanifolds <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M subset-of bold upper R Superscript n"> <mml:semantics> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">M \subset {{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of arbitrary codimension imply results for multipliers having a singularity of the form <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d i s t left-parenthesis x comma upper M right-parenthesis Superscript alpha"> <mml:semantics> <mml:mrow> <mml:mi>dist</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>M</mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\operatorname {dist} {(x,M)^\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> near <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ On the cone multiplier in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math> 2012 Sanghyuk Lee
Ana Vargas
+ A Bessel function multiplier 1999 Daniel M. Oberlin
Hart F. Smith
+ PDF Chat A multiplier theorem for Fourier transforms 1974 James Dougal Mccall
+ PDF Chat A multiplier relation for Calderón-Zygmund operators on 𝐿¹({ℝ}ⁿ) 1999 Jonathan Bennett
+ Weak type estimates for cone multipliers on 𝐻^{𝑝} spaces, 𝑝&lt;1 2000 Sunggeum Hong
+ Marcinkiewicz’s theorem on operator multipliers of Fourier series 2003 Milutin R. Dostanić
+ PDF Chat Trace-class norm multipliers 1980 Roshdi Khalil
+ PDF Chat Approximation of multipliers 1974 Garth I. Gaudry
Ian Inglis
+ PDF Chat On the Möbius function 1987 Helmut Maier
+ PDF Chat On the characterization of 𝐻^{𝑝}(𝑅ⁿ) in terms of Fourier multipliers 1990 Akihito Uchiyama
+ PDF Chat Extension of Fourier 𝐿^{𝑝}—𝐿^{𝑞} multipliers 1975 Michael Cowling
+ PDF Chat An extension of the Fuglede commutativity theorem modulo the Hilbert-Schmidt class to operators of the form ∑𝑀_{𝑛}𝑋𝑁_{𝑛} 1983 Gary Weiss
+ PDF Chat On Fourier integral operators 1982 A. El Kohen
+ PDF Chat The Hilbert transform with exponential weights 1992 Leonardo Colzani
M. Vignati
+ PDF Chat Some remarks on the operator of Foias and Williams 1996 S. Petrović
+ PDF Chat Cesàro means of Fourier transforms and multipliers on 𝐿¹(𝑅) 1994 Dăng Vũ Giang
Ferenc Móricz
+ PDF Chat Selfadjointness of the momentum operator with a singular term 1989 Michiaki Watanabe
Shuji Watanabe
+ PDF Chat A pointwise spectrum and representation of operators 1998 N. Bertoglio
Servet Martı́nez
Jaime San Martı́n
+ PDF Chat A note on Walsh-Fourier series 1976 Wo Sang Young
+ PDF Chat A note on the integral ∫^{∞}₀ 𝑡^{2𝛼-1}(1+𝑡²) ^{1-𝛼-𝛽}𝐽_{𝜈}(𝑥√(1+𝑡²))𝑑𝑡 1979 M. L. Glasser