Schrödinger operator methods in the study of a certain nonlinear P.D.E

Type: Article

Publication Date: 1983-01-01

Citations: 4

DOI: https://doi.org/10.1090/s0002-9939-1983-0695279-5

Abstract

We prove that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta u plus h u Superscript alpha Baseline equals 0"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>h</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>u</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:msup> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\Delta u + h{u^\alpha } = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has no positive solutions for certain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding="application/x-tex">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha"> <mml:semantics> <mml:mi>α<!-- α --></mml:mi> <mml:annotation encoding="application/x-tex">\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by studying the linearized equation <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis normal upper Delta plus h u Superscript alpha minus 1 Baseline right-parenthesis psi equals e psi"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mo>+</mml:mo> <mml:mi>h</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>α<!-- α --></mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo>=</mml:mo> <mml:mi>e</mml:mi> <mml:mi>ψ<!-- ψ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">(\Delta + h{u^{\alpha - 1}})\psi = e\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A Liouville type theorem for the Schrödinger operator 1999 Antonios D. Melas
+ PDF Chat A note on decay property of nonlinear Schrödinger equations 2022 Chenjie Fan
Zehua Zhao
+ PDF Chat 𝐿^{𝑝} estimates for Schrödinger evolution equations 1985 Mikhaël Balabane
Hassan Emamirad
+ Positive solutions for a class of generalized quasilinear Schrödinger equation involving concave and convex nonlinearities in Orilicz space 2021 Yan Meng
Xianjiu Huang
Jianhua Chen
+ PDF Chat A note on solutions of the Schrödinger equation 1993 Wolfhard Hansen
+ Generalized Nehari manifold and semilinear Schrödinger equation with weak monotonicity condition on the nonlinear term 2016 Francisco Odair de Paiva
Wojciech Kryszewski
Andrzej Szulkin
+ PDF Chat On the absence of necessary conditions for linear evolution operators 1977 Jerome A. Goldstein
+ PDF Chat Nonlinear perturbation of 𝑚-accretive operators 1974 W. E. Fitzgibbon
+ Schrödinger equations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> with critical exponential growth and concave nonlinearities 2022 Xiaoyan Lin
Xianhua Tang
+ Schrödinger-Maxwell systems with interplay between coefficients and data 2021 David Arcoya
Lucio Boccardo
Luigi Orsina
+ ON SOME SCHRÖDINGER TYPE EQUATIONS 2009 Sergio Polidoro
Maria Alessandra Ragusa
+ Ill-posedness for the nonlinear Schrödinger equation with quadratic non-linearity in low dimensions 2014 Tsukasa Iwabuchi
Takayoshi Ogawa
+ New results concerning a Schrödinger equation involving logarithmic nonlinearity 2024 Yiming Cai
Yulin Zhao
Chaoliang Luo
+ PDF Chat Carleman inequalities for the Dirac operator and strong unique continuation 1995 Yonne Mi Kim
+ PDF Chat Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators 1996 Fritz Gesztesy
Barry Simon
+ PDF Chat Existence of Solutions for a Modified Nonlinear Schrödinger System 2013 Yujuan Jiao
Yanli Wang
+ Corrigendum to "Weighted<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math>estimates for the elliptic Schrödinger operator" [Electron. J. Qual. Theory Differ. Equ. 2014, No. 33, 1-13] 2015 Fengping Yao
+ PDF Chat Harnack’s inequality for degenerate Schrödinger operators 1989 Cristian E. Gutiérrez
+ PDF Chat Subcriticality and gaugeability of the Schrödinger operator 1992 Z. Zhao
+ Analysis of Schrödinger means 2019 Per Sjölin
Jan-Olov Strömberg